Curriculum Condensed Matter Physics: Theory and Experiment

Responsible: Paolo Postorino

e-mail: paolo.postorino@roma1.infn.it paolo.postorino@uniroma1.it

Fermi building, IV floor, room 401

Exploring our Dept. website DEPARTMENT OF PHYSICS SCIENTIFIC REPORT https://www.phys.uniroma1.it/fisica/ricerca/ *From 2007 to 2019 !*

The Condensed Matter (CM) Physics group at the Physics Department of Sapienza, Università di Roma is composed by about 40 scientists with permanent positions (assistant, associate and full professors) and several affiliated researchers (mostly from CNR) who actively investigate different properties of hard matter, nano-structures, soft and bio matter, photonics and quantum technologies, or even create new frontiers of physics exporting ideas developed in and for CM physics to other (even very far) fields.

Dipartimento di Fisica

Pages 55-96

Studiare Fisica alla Sapienza

https://www.phys.uniroma1.it/fisica/didattica/orientamento/libretto-gli-studenti

Placement

https://www.phys.uniroma1.it/fisica/didattica/placement

Gianluca.Cavoto@uniroma1.it

Important dealines

Custom tailoring your programme

Period of presentation of TRAINING PROGRAMMES AA. 2021/22:

First period: 18/10/2021-10/12/2021 (freshmen i.e. 1° year students & 2° year students to modify the training programme)

Second period: 01/02/2022 - 21/02/2022 (only for freshmen)

Information and syllabus for courses: <u>https://corsidilaurea.uniroma1.it/it/corso/2021/30055/cds</u>

Curriculum

Standard:

Mandatory (6) and eligible courses (6) chosen within the groups: A(1), B(2) , C(1), free choice (2) Notice: 2 non-FIS courses are required!

5 curricula recommended:

- Complexity Science
- Disordered systems: liquid, glassy and soft matter
- Photonics and Quantum Technologies
- Superconductivity, Strongly Correlated Systems, and Functional Materials
- Surface Physics and Nanostructures

Customized

Mandatory courses are always mandatory but eligible courses can be chosen more freely. The individual plan <u>must</u> be motivated and possibly discussed with the responsible of the curriculum.

Introduction to Quantum Field Theory \equiv Relativistic Quantum Mechanics

	Corso di laurea in Fisica (LM-17) - Curriculum Condensed matter physics: Theory and experiment											
N.	Insegnamenti		CFU	anno	sem.	SSD	eng	ambito				
1	Introduction to Quantum Field Theory	Y	6	1	1	FIS/02	Y	caratt.				
2	Condensed Matter Physics		6	1	1	FIS/03	Y	caratt.				
3	Physics Laboratory I (propedeutico a Physics Laboratory II)	*	6	1	1	FIS/01	Y	caratt.				
4	Physics Laboratory II	*	9	1	2	FIS/01	Υ	caratt.				
5	Condensed Matter Physics II		6	1	2	FIS/03	Y	caratt.				
6	Computing Methods for Physics	*	6	1	1	INF/01	Y	affint.				
7	English Language		4	1	2		Y	AAF				
8	Elective (within group A)		6	1/2	1/2		Y	affint.				
9	Elective (within group B)		6	1/2	1/2	FIS/03	Y	caratt.				
10	Elective (within group B)		6	1/2	1/2	FIS/03	Υ	caratt.				
11	Elective (within group C)		6	1/2	1/2		Y	affint.				
12	Elective (free choice)		6	1/2	1/2							
13	Elective (free choice)		6	1/2	1/2							
14	Internship		3	2	1		Y	AAF				
15	Thesis Project		38	2	2		Y	AAF				

* internal multiple choice

Corso di laurea in Fisica (LM-17) -Curriculum Condensed matter physics: Theory and experiment

N.	Insegnamenti	CFU	anno	sem.	SSD	eng	ambito
1	Introduction to Quantum Field Theory	6	1	1	FIS/02	Y	caratt.
2	Condensed Matter Physics	6	1	1	FIS/03	Υ	caratt.
3	Physics Laboratory I (propedeutico a Physics Laboratory II)	6	1	1	FIS/01	Y	caratt.
4	Physics Laboratory II	9	1	2	FIS/01	Υ	caratt.
5	Condensed Matter Physics II	6	1	2	FIS/03	Υ	caratt.
6	Computing Methods for Physics	6	1	1	INF/01	Υ	affint.
7	English Language	4	1	2		Υ	AAF
8	Elective (within group A)	6	1/2	1/2		Υ	affint.
9	Elective (within group B)	6	1/2	1/2	FIS/03	Υ	caratt.
10	Elective (within group B)	6	1/2	1/2	FIS/03	Υ	caratt.
11	Elective (within group C)	6	1/2	1/2		Υ	affint.
12	Elective (free choice)	6	1/2	1/2			
13	Elective (free choice)	6	1/2	1/2			
14	Internship	3	2	1		Υ	AAF
15	Thesis Project	38	2	2		Y	AAF

Corso di laurea in Fisica (LM-17) -Curriculum Condensed matter physics: Theory and experiment

N.	Insegnamenti	CFU	anno	sem.	SSD	eng	ambito
1	Introduction to Quantum Field Theory	6	1	1	FIS/02	Υ	caratt.
2	Condensed Matter Physics	6	1	1	FIS/03	Υ	caratt.
3	Physics Laboratory I (propedeutico a Physics Laboratory II)	6	1	1	FIS/01	Y	caratt.
4	Physics Laboratory II	9	1	2	FIS/01	Υ	caratt.
5	Condensed Matter Physics II	6	1	2	FIS/03	Υ	caratt.
6	Computing Methods for Physics	6	1	1	INF/01	Y	affint.
7	English Language	4	1	2		Y	AAF
8	Elective (within group A)	6	1/2	1/2		Υ	affint.
9	Elective (within group B)	6	1/2	1/2	FIS/03	Υ	caratt.
10	Elective (within group B)	n-FIS	/ 2	1/2	FIS/03	Υ	caratt.
11	Elective (within group C)	- .	/ 2	1/2		Υ	affint.
12	Elective (free choice)	6	1/2	1/2			
13	Elective (free choice)	6	1/2	1/2			
14	Internship	3	2	1		Υ	AAF
15	Thesis Project	38	2	2		Y	AAF

1	Gruppo A (aff.– int.)							
	1	Statistical Mechanics and Critical Phenomena	6	1	1	FIS/02	Y	
	2	Physics of liquids	6	1	2	FIS/03	Y	
	3	Physics of solids	6	2	1	FIS/03	Y	

Gruppo A (aff.– int.)								
	1	Statistical Mechanics and Critical Phenomena	6	1	1	FIS/02	Y	
	2	Physics of liquids	6	1	2	FIS/03	Y	
	3	Physics of solids	6	2	1	FIS/03	Y	

1

2 Gru	Gruppo B (caratt.)								
1	Soft and Biological Matter	6	1	1	FIS/03	Y			
2	Nonlinear and Quantum Optics	6	1	1	FIS/03	Y			
3	Photonics	6	1	2	FIS/03	Y			
4	Physics of liquids	6	1	2	FIS/03	Y			
5	Spectroscopy Methods and Nanophotonics	6	1	2	FIS/03	Y			
6	Superconductivity and Superfluidity	6	1	2	FIS/03	Y			
7	Many Body Physics	6	2	1	FIS/03	Y			
8	Physics of solids	6	2	1	FIS/03	Y			
9	Physics of Complex Systems	6	2	1	FIS/03	Y			
10	Surface Physics and Nanostructures	6	2	1	FIS/03	Y			

Grupp	oo C (affint)						
1	Computational Biophysics	6	1	1	INF/01	Y	
2	Nonlinear and Quantum Optics	6	1	1	FIS/03	Y	
3	Soft and Biological Matter	6	1	1	FIS/03	Y	
4	Statistical Mechanics and Critical Phenomena	6	1	1	FIS/02	Y	
5	Biophysics	6	1	2	FIS/03	Y	
6	Computer architecture for Physics	6	1	2	INF/01	Y	
7	Advanced Machine Learning for Physics	6	1	2	INF/01	Y	
8	Mathematical Physics	6	1	2	MAT/0 7	Y	
9	Neural Networks	6	1	2	FIS/02	Y	
10	Nonlinear waves and solitons	6	1	2	FIS/02	Y	
11	Photonics	6	1	2	FIS/03	Y	
12	Physics of liquids	6	1	2	FIS/03	Y	
13	Spectroscopy Methods and Nanophotonics	6	1	2	FIS/03	Y	
14	Superconductivity and Superfluidity	6	1	2	FIS/03	Y	
15	Theoretical Biophysics	6	1	2	FIS/02	Y	
16	Molecular Biology	6	1	2	BIO/11	Y	
17	Quantum Field Theory	6	2	1	FIS/02	Y	
18	Physics of Solids	6	2	1	FIS/03	Y	
19	Medical Applications of Physics	6	2	1	FIS/01	Y	
20	Many-Body Physics	6	2	1	FIS/03	Y	
21	Physics of Complex Systems	6	2	1	FIS/03	Y	
22	Quantum Information and Computation	6	2	1	FIS/01	Y	
23	Solid State Sensors	6	2	1	FIS/01	Y	
24	Statistical Mechanics of Disordered Systems	6	2	1	FIS/02	Y	
25	Surface Physics and Nanostructures	6	2	1	FIS/03	Y	
26	Statistical Physics and Machine Learning	6	2	1	FIS/02	Y	

Complexity Science

ANNO	SEM.	CFU
1	1	
Introductio	on to Quantum Field Theory	6
Condensed	d Matter Physics	6
Physics Lat	<u>b I</u>	6
Computing	g Methods for physics (C-INF)	6
Statistical	mechanics and Critical Phenomena (A)	6
		30

ANNO SEM.

2

Physics Lab II	9
Condensed Matter Physics II	6
Meccanica Statistica del Non Equilibrio (C)	6
English Language	4
One among (Free Choice):	
Advanced Machine Learning for Physics;	
Deep learning and applied artificial intelligence (Informatica)	
	6
	31

ANNO	SEM.	
2	1	
Machine L	earning (C-INF)	6
Physics of	Complex Systems (B)	6
One amon	g (free choice):	
Supercond	uctivity and Superfluidity;	
Statistical	mechanics of disordered sy	/stems;
Introduzio	ne alla teoria dei processi s	stocastici;
Statistical	physics and Machine learni	ing 6
<u>Internship</u>		3
		21

ANNO	SEM.	
2	2	
Thesis pro	ject	

Disordered systems: liquid, glassy and soft matter

ANNO	SEM.	
1	1	CFU
Introductio	6	
<u>Condensec</u>	6	
Physics Lab	<u>51</u>	6
Computing	g Methods for Physics (C-INF)	6
Soft and Bi	6	
		30

ANNO	SEM.		
1	2		
Physics La	b II		9
Condensed Matter Physics II		<u>; 11_</u>	6
Physics of	Liquids (A)		6
Biophysics (C)			6
One amor	ig:		
Deep lear	ning and applied	artificial intelligence;	
Machine L	earning;		
Advanced	Machine Learnin	ng for Physics;	
or anothe	r non-FIS course		6
English Language			4
Totale			37

ANNO SEM.

2

Two among (free choice):

1

Statistical mechanics of disordered systems;

Introduzione alla teoria dei processi stocastici ed applicazioni	alla fisica
Statistical mechanics and Critical Phenomena	12
Internship	3
Totale	15

ANNO	SEM.	
2	2	
Thesis proje	ect	

Photonics and Quantum Technologies

ANNO	SEM.	CFU	
1	1		
Introduction to Quantum Field Theory			
Condensed Matter Physics			
Physics Lab I			
Nonlinear and	d Quantum Optics (B)	6	
Computing m	ethods for physics (C-Inf)	6	
		30	
ANNO	SEM.		
1	2		
Physics Lab II		9	
Condensed N	1atter Physics II	6	
English Langu	lage	4	
Photonics (B)			
One among:			
Spectroscopy	methods and nanophotonics;		
Nonlinear wa	ves and solitons;		
One free choi	ice non-FIS	6	
		31	
ANNO	SEM.		
2	1		
Physics of Sol	ids (A)	6	
Quantum Information and Computation (C)			
One among:			
Solid State Sensors;			
Surface Physi			
One free choice non-FIS (required)			
Internship		3	
		21	

ANNO	SEM.	
2	2	
Thesis projec	t	

Superconductivity, Strongly Correlated System, and Functional Materials

Introduction	to Quantum Field Theory	6	
Condensed Matter Physics Physics Lab I			
One among:			
Statistical me	chanics and Critical Phenomena (C);		
Nonlinear and	Quantum Optics (C)	6	
		30	
ANNO	SEM.		
1	2		
Physics Lab II		9	
	latter Physics II	6	
English Langu		4	
	tivity and Superfluidity (B)	6	
One or Two a	5		
Spectroscopy	methods and nanophotonics (B);		
Mathematica	l Physics (C-Mat);		
Photonics (C)	;		
Physics of liqu	uids (C);		
another non-	fis exam of group C	6 or 12	
		31 or 37	
ANNO	SEM.		
2	1		
2	•		
Physics of Sol	ids (A)	6	
Many-Body P	hysics (B)	6	
Zero or One:	Surface Physics and Nanostructures (B);		
	Quantum Information and Computation (C);		
	Solid State Sensors (C);		
	Machine Learning (C-Inf -Informatica);		
	Advanced Machine Learning for Physics;		
	or other non-Fis exam	0 or 6	
Internship		3	
		21 or 15	
ANNO	SEM.		
2	•		

Thesis project

Surface Physics and Nanostructures

ANNO	SEM.	CFU
1	1	
Introduction t	to Quantum Field Theory	6
Condensed M		6
Physics Lab I		6
	ethods for physics (C-Inf)	6
One among:	Nonlinear and Quantum Optics (C);	
	Statistical mechanics and Critical Phenomena	a (C) 6 <u>30</u>
ANNO	SEM.	
1	2	
Physics Lab II		9
	latter Physics II	6
English Langu		4
Spectroscopy	methods and nanophotonics (B)	6
One or two ar	mong:	
	itvity and Superfluidity (B);	
Photonics (C);		
Physics of liqu		
	I Physics (C-mat);	
or another no		6 o 12
		31 or 37
ANNO	SEM.	
2 Dhusies of Coll	1	6
Physics of Sol Surface Physic	cs and Nanostructures (B)	6 6
Surface ringsi		•
One or zero a	0	
Many Body Pl		
	ormation and Computation (C);	
	nsors (elective free choice);	
Machine Lear	- · · · · · · · · · · · · · · · · · · ·	
	ichine Learning for Physics;	6 - 6
or another no	on-fis exam	600
Internship	-	3
		21 or 15
ANNO	SEM.	

ANNO	SEM.	
2	2	
Thesis pro	ject	

Nanostructured & low dimensional systems

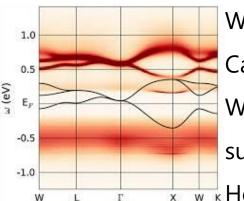
Liquids & disordered systems to the research activity carried out in the Dept.

Quantum information, non linear optics

Statistical Mechanics

Materials and methods for cultural heritage ...

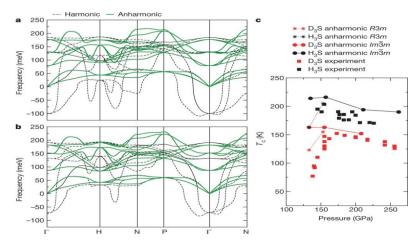
In house laboratory (Spectroscopy: optical, electron, linear, nonlinear, time resolved...)


Computational and *abinitio* methods.

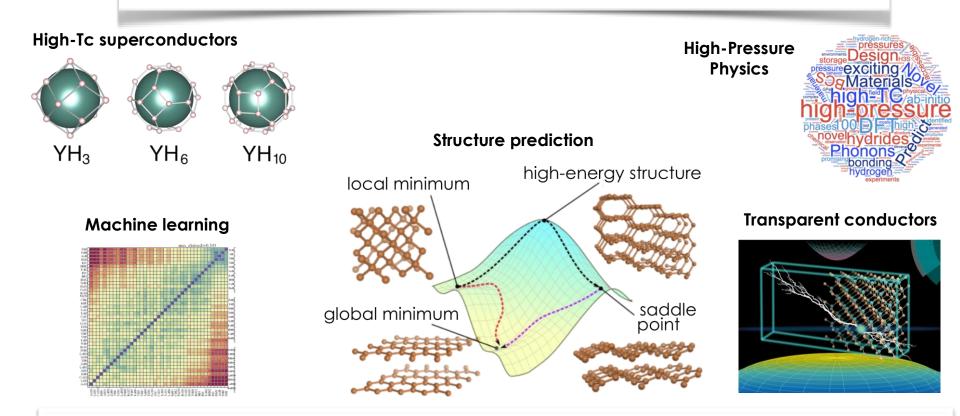
Research activities and methods in condensed matter

Large scale facilities: Synchrotron and Neutron

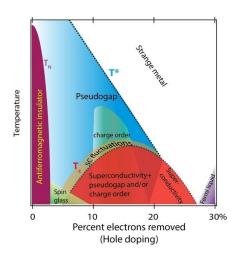
sources


What hard condensed matter theorists do?

What is the electronic structure of the different solid-state materials? Can electronic states be `topologically non trivial'? What are the resulting physical properties? Insulator, metal, superconductor,...


How electrons and other degrees of freedom (e.g. ions) interact?

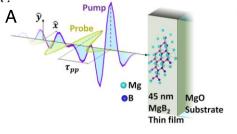
For instance new techniques can be invented to treat the anharmonic effects in solids and investigate the stability of **high-temperature superconductors under very high pressure**

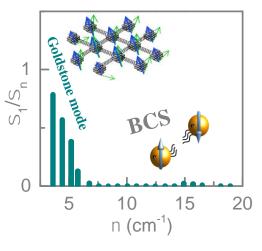

Quantum Materials Modelling

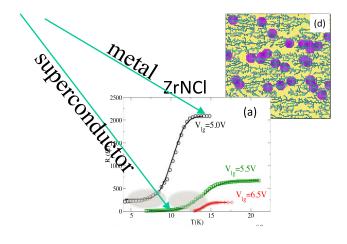
Research Goal = theory & design of complex solids, use & development of theoreticalcomputational methods based on quantum mechanics.

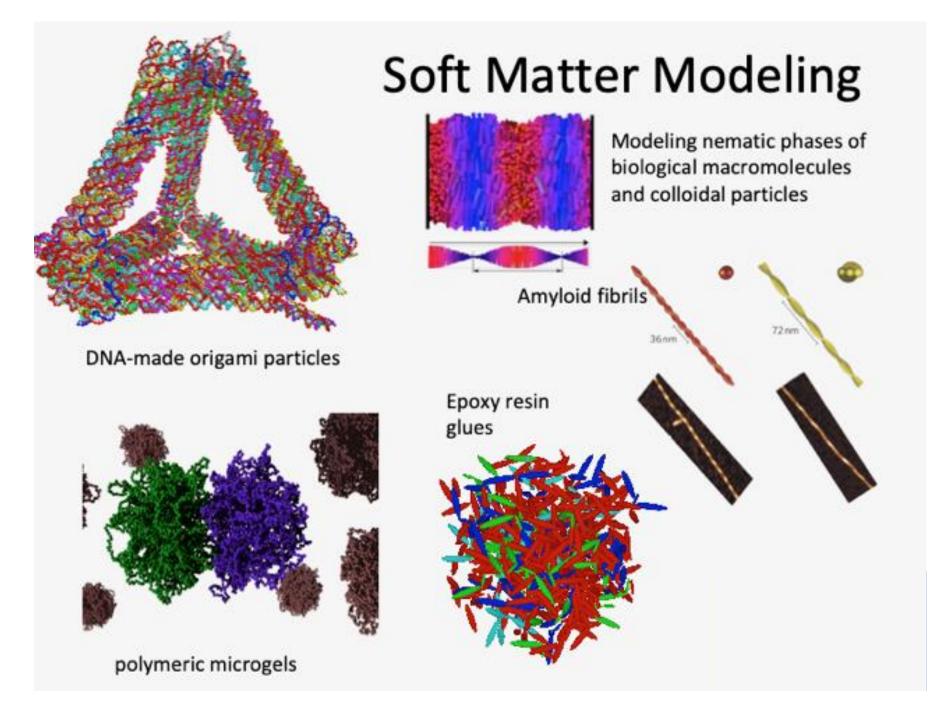
Keywords = Superconductors; Transparent conductors; Magnetic Materials; Ab-initio crystal structure prediction; Machine Learning; DFT; QMC; Pseudopots.

Modelling superconductivity and its enemies (disorder, cdw, ...)

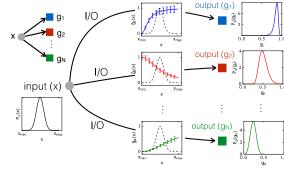

Some materials change a lot their properties by varying some parameter (e.g. electron density) and have strange properties. Why? Which ingredients are important and should be kept in a model?


Competing phases are very interesting and new features can emerge...


One of the aspects of complexity...

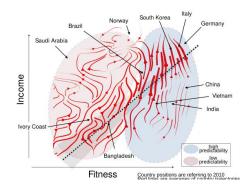

How electrons oscillate collectively in a superconductor? Analogies with high-energy stuff....

(Higgs, Goldstone and so on...)

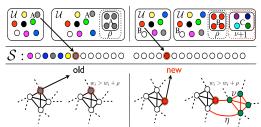


Condensed Matter Theory spin offs: The physics of `a lot of things'!

Gene expression is a complex process that should be regulated via networks of molecules (proteins or RNAs) that interact with each other

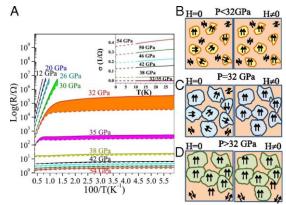


Growth of complex structures,....

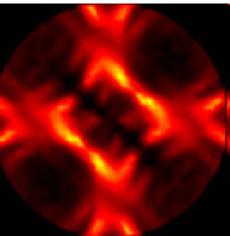

Planning of urban infrastructures, containment strategies for pandemics, impact of political campaigns, measures against information pollution and

misinformation.

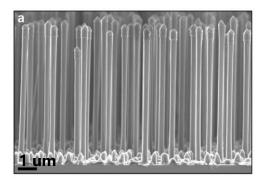
Base	New York	Matti	17 15 13 12 11
Montreal	Sydney	Boston	-8 -7 -5 -4 -2

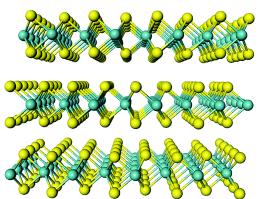


Estimate the rate at which new events occur: How networks grow? How new genes appear in a population?...

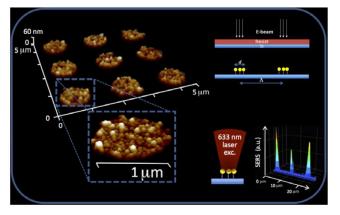

quantitative assessments of countries' competitiveness and potential of growth, through the concept of **Fitness**, and products' sophistication and technological content,

Superconductivity & strongly correlated materials

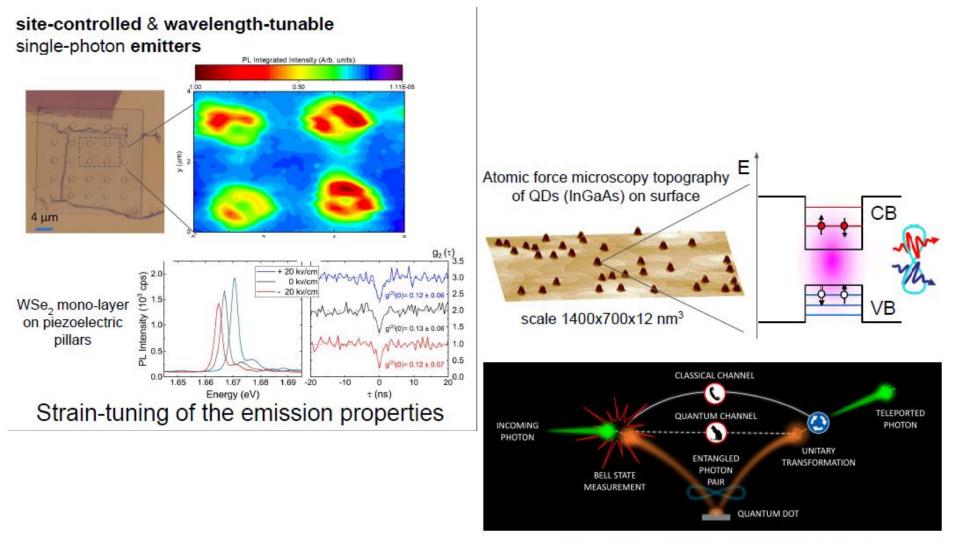

Condensed matter under extreme conditions (very high P, very high/low T)



Fermi surface of the Bi2212 superconductor

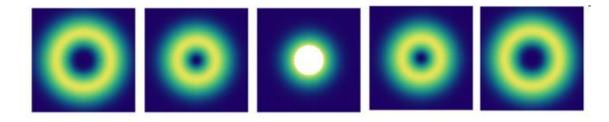

Nanostructures and low-dimensional systems

Semiconductor nanowires, Metallic nanostructure

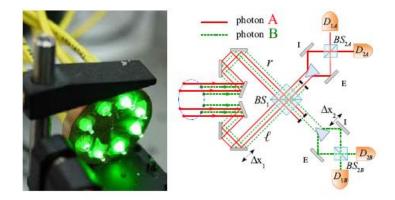


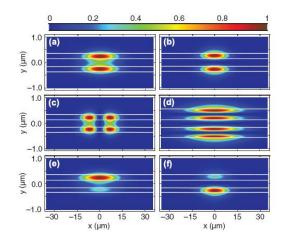
Transition metal dichalcogenides (TMDs)

Self assembled nanoparticles

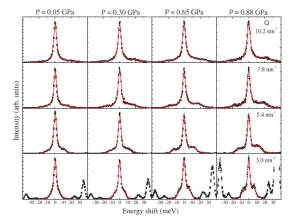

Single-photon emitters based on 2D materials

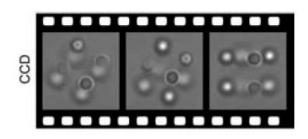
Quantum teleportation scheme


QD to be used as entangled-light sources

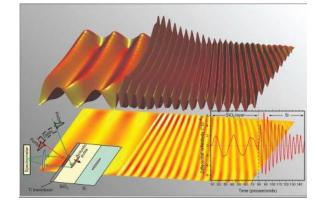

Quantum information, non-linear optics

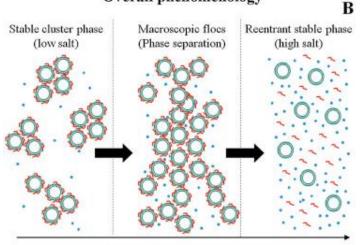
Qu-bits, quantum photonics


Optical technologies for quantum information.



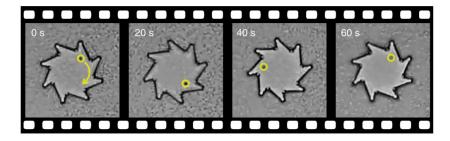
Non-linear optics, super-resolution


Liquids & disordered systems

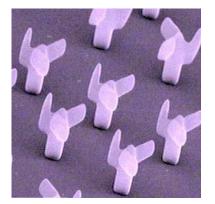


Sound velocity in liquids under extreme pressures / colloidal particle

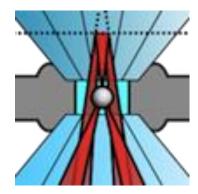
Coherent excitation in disordered systems, femto-second spectroscopy


Colloids, interfaces

Overall phenomenology

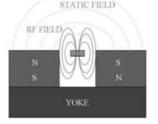

Monovalent salt concentration (.)

Structured matter at the microscale



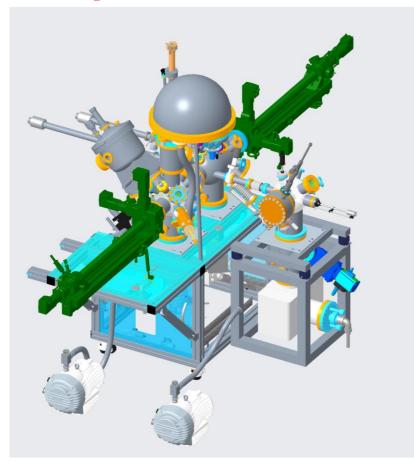
Active matter, ...

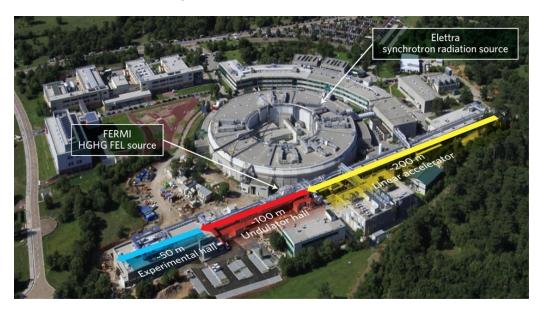
...



Light driven Micromotors

Optical trapping


Materials and methods for cultural heritage


Diagnostic for cultural heritage

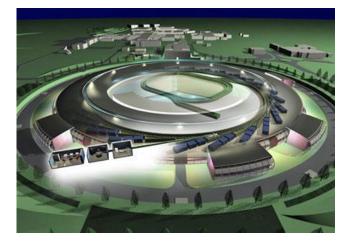
new Amaldi Research Center laboratory @Dipartimento di Fisica

a unique spatially-resolved micro-photoemission and micro-Raman/photo-luminescence facility, with growth of 2D materials, all in vacuum... operative from ~July 2021

ELETTRA (Trieste, Italy)

+ Fermi FEL (Free Electron Laser)

ESRF Grenoble (France)



DIAMOND Oxforshire (United Kindom)

SOLEIL Paris (France)

