Gender inequalities in academia: trends, reasons and mechanisms

Camilla Gaiaschi
She Rocks Science
Università La Sapienza - Dipartimento di Fisica
11 Febbraio 2024

Selected papers:

Gaiaschi, C. 2023. Gender, class and the meritocratic ideal. The case of the life sciences in Italian Academia. In Conley, H. and Sandberg, P. K. (eds.) Handbook on Gender and Public Sector Employment. Edward Elgar.

Gaiaschi, C., Musumeci, R. «Why so slow?» (2021). Un'analisi del reclutamento accademico in Italia dal 2000 al 2020, tra processi di femminilizzazione e (ri)maschilizzazione. AIS - Journal of Sociology, 18, pp. 97-122. ISSN 2281-2652.

Gaiaschi, C. (2021). Università e cultura dell'eccellenza: più meritocratica per chi? Aporie di genere nell'accademia italiana. Etnografia e ricerca Qualitativa, (2). ISSN:1973-3194

Gaiaschi, C. (2021). Highly Skilled Women Reaching the Top: A Cost-free Achievement? Analyzing the Gender Promotion Gap in the Medical Profession. Social Forces, 100(2), pp. 622-648.

Gaiaschi, C. (2021). The academic profession in neoliberal times: a gendered view. Professions and Professionalism, 11(1).

Gaiaschi, C. \& Musumeci, R. (2020) Just a Matter of Time? Women\'s Career Advancement in Neo-Liberal Academia. An Analysis of Recruitment Trends in Italian Universities. Social Sciences, 9(9), $163 .$.

Gaiaschi, C. (2019). Same job, different rewards: the gender pay gap among physicians in Italy. Gender Work \& Organization, 26(11), 1562-1588.

Gaiaschi, C. (2017). Premiums and penalties among physicians in Italy: how gender affects the combined impact of marital and parental status on pay. Polis, (1), 97-126

The three questions

SCIENCE
 AMy Mes

Why so few?
Alice Rossi, 1965

Why so low?
Inspired by:
Rossella Palomba, 2013

Why so few: female rates across scientific field - Italy

Why so low: the scissor diagram

Why so slow: recruitments vs employed

Watch out: how to measure inequalities?

- Descriptive statistics can only provide us with unadjusted gender inequality gaps (in the career progression).
- Inequality does not mean discrimination!
- In order to see if discrimination is occurring it is essential to measure the adjusted gender gap through, for example, experimental methods or multivariate analysis on observational analysis!

The adjusted gaps in academia

- The international literature shows that women have a smaller - adjusted - probability of becoming full professor (i.e. Perna et al. 2005; Durodoye et al. 2020; IT: Marini e Meschitti 2018), associate professor (i.e. Wolfinger et al. 2008; Box Steffenmeiser et al. 2015; Weisshaar 2017; Filandri e Pasqua 2019) and assistant professor (Groenwald et al. 2012; Wolfinger et al. 2008; Ginther e Kahn 2009).
- They are more likely to drop-out before obtaining tenure: Durodoye et al. 2020; DuboisShaik and Fusulier 2015, Huang et al. 2020.
- To date, studies that have measured the "adjusted" probability of career transition in Italy have focused on full (Marini and Meschitti, 2018; Filandri and Pasqua, 2019) or associate (Filandri and Pasqua) professors.
- The disadvantage that women experience in the transition from postdoc to assistant professor has been documented only at a descriptive level (Picardi, 2019; Gaiaschi and Musumeci, 2020, 2012, Gaiaschi 2022).
- To date, an "adjusted" measure of the likelihood of becoming an RTD is lacking, even in light of the contractual changes this position has gone through over time (L. 240/2010).
- The WIRED project is filling this gap!

The WIRED project MSCA IF 2021-2023

Il progetto WIRED (2021-2023)

WIRED

- Aim: to analyze the gender gap in academia in IT and CH with a focus on early career stayu゙.
- Partnerships: MUR; UST; UNIL; UNIGE.
- TEAM: Camilla Gaiaschi (PI), Stephanie Steinmetz (UNIL), Giulia Valsecchi (UNIGE), Katy Morris (UNIL).
- Italian dataset: administrative data on the academic population + ASN data (provided by MUR) + 3 web sources on organizational performance: data on departments of excellence (MUR) 2017, Anvur data 2011-2014 and 2015-2019
- Range: 2005-2020
- Information on: gender, year of birth, nationality, position, area (14 items), SSD (361 items), ASN standardized productivity scores, year of application and attainment, area, university, department, 2017 score in the «departments of excellence ranking » (department), 2011-2014 and 20152019 scores in ANVUR ranking (universityXarea and SSD).

Research questions

- WHAT - Do women have a smaller probability to cecome assistant professor?
- WHY - If it's so: what are the reasons for this disadvantage?
- WHEN 1 - Do women take longer to become RTD (with Katy Morris)?
- WHEN 2 - Has the gender gap changed over time?

Methods and models

WHAT: are postdoc women less likely to become RTDs?

- Linear probability model (LPM) with random effects on 2010-2020 data $Y_{i t}=\beta_{0}+\beta_{1}$ gender $++\beta_{p} x_{p}+\alpha_{i}+\epsilon_{i t}$

WHY: what are the determinants of the gap?

- "Nested" models and models with interactions (between gender and: productivity, science area, and \% ordinary)

WHEN 1 - do women take longer to get an RTD?

- Survival analysis - «accelerated failure time» (AFT) su dati 2010-2020

WHEN 2 - Has the gap changed since the reform?

- Linear regression discontinuity model with RE on 2005-2020 data. $Y_{i t}=\beta_{0}+\beta_{3}$ time $+\beta_{1}$ gender $+\beta_{2}$ treat $+\beta_{4}$ treat ${ }^{*}$ gender $+\beta_{4}$ time ${ }^{*}$ gender $+\beta_{5}$ treat ${ }^{*}$ time $+\beta_{p} X_{p}+\alpha_{i}+\epsilon_{i t}$

Some preliminary results

What: the gender gap in recruitment

			Unadjusted	Udjusted
M1	AR > RTDab	b	-. 040 ***	$-0.042 * * *$
		SE	. 0017516	. 0016882
		N obs.	254,299	254,299
		N ind.	84,657	84,657
M2	$\mathrm{AR}>\mathrm{RTDa}$	b	-.024***	$-.031 * *$
		SE	. 0015251	. 0015264
		N obs.	236,460	236,460
		N ind.	83,505	83,505
M3	AR > RTDb	b	$-.027 * * *$	-.029**
		SE	. 0015264	. 0012388
		N obs.	226,19	226,19
		N ind.	82,537	82,537
M4	$\mathrm{RTDa}>\mathrm{RTDb}$	b	-.032**	.052**
		SE	. 0071166	. 0073427
		N obs.	45,946	45,946
		\% N ind.	14,041	14,041

* $\mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$

Why: gender and self-promotion

having succeded in the PA habilitation	$\begin{gathered} \text { gender_real } \\ M \end{gathered}$		Total
Tried and failed	4,079	4,291	8,370
	5.28	5.93	5.59
Tried and successed	29,812	22,218	52,030
	38.58	30.69	34.76
-	43,390	45,875	89,265
	56.15	63.38	59.64
Total	77,281	72,384	149,665
	100.00	100.00	100.00

Why: gender and scientific area

Why: gender and scientific productivity

When: the effects of the reform

Average marginal effects of postreform*gender						
Udjsted model	Men	Women	W-M			
Before the reform	0	$()$.	0	$()$.	$-.023^{* * *}$	$(.0027)$
After the reform	$-.850^{* * * *}$	(0.0021)	$.0871^{* * *}$	(0.0021)	. $.043^{* * *}$	$(.0040)$
N. obs: 529,$275 ;$ N. ind: $123,354-$ SE in parenthesis						
$* \mathrm{p}<0.05, * * \mathrm{p}<0.01, * * * \mathrm{p}<0.001$						

> Random-effects Regression Discontinuity model:
$Y_{i t}=\beta 0+\beta$ time $+\beta$ gender $+\beta$ treat $+\beta$ treat ${ }^{*}$ gender $+\beta$ time ${ }^{*}$ gender $+\beta$ treat ${ }^{*}$ time $+\beta p X p+\alpha_{i}+\epsilon_{i t}$

- DEP VAR: $\mathrm{Y}=\mathrm{RU}$ (if year < 2012) + RTDa+RTDb
- TREATMENT (var « postreform »): post-reform=1 if year>2011; post-reform=0 if year<2012

Preliminary conclusions

- Women are around $-4 \% /-5 \%$ less likely to become researchers controlling for differences in: age, nationality, university, department, scientific field, individual and organizational productivity, etc.
- Women are less likely to apply for the ASN and this partly explains the gap!
- Scientific productivity does not " pay " equally for men and women in terms of chances for promotion.
- Scientific fields play a crucial role in explaining the gap: medicine is the most penalizing area for women, preceded by political and social sciences! Many STEM areas, on the other hand, are not more unequal than the SSH, particularly mathematics (where there is no gap!).
- The Gelmini reform seems to have widened the gender gap.

Explaining the gender promotion gap

Explaining the gender gap in promotion

The reasons:

- Supply-side, micro:

1. Differences in scientific and mathematical abilities and attitudes
2. Differences in family responsabilities (babies)
3. Differences in scientific productivity
4. Differences in self-promotion

- Demand-side, micro: biases in evaluation processes
- Demand-side, meso: resources, networks, segregation, work-place climate.
- Demand-side, macro: university reforms and transformations

The reasons:

- Supply-side, micro:

1. Differences in scientific and mathematical abilities and attitudes
2. Differences in family responsabilities (babies)
3. Differences in scientific productivity
4. Differences in self-promotion

- Demand-side, micro: biases in evaluation processes
- Demand-side, meso: resources, networks, segregation, work-place climate.
- Demand-side, macro: university reforms and transformations

The reasons:

- Supply-side, micro:

1. Differences in scientific and mathematical abilities and attitudes
2. Differences in family responsabilities (babies)
3. Differences in scientific productivity
4. Differences in self-promotion

- Demand-side, micro: biases in evaluation processes
- Demand-side, meso: resources, networks, segregation, work-place climate.
- Demand-side, macro: university reforms and transformations

The reasons:

- Supply-side, micro:

1. Differences in scientific and mathematical abilities and attitudes
2. Differences in family responsabilities (babies)
3. Differences in scientific productivity
4. Differences in self-promotion

- Demand-side, micro: biases in evaluation processes
- Demand-side, meso: resources, networks, segregation, work-place climate.
- Demand-side, macro: university reforms and transformations

The reasons:

- Supply-side, micro:

1. Differences in scientific and mathematical abilities and attitudes
2. Differences in family responsabilities (babies)
3. Differences in scientific productivity
4. Differences in self-promotion

- Demand-side, micro: biases in evaluation processes
- Demand-side, meso: resources, networks, segregation, work-place climate.
- Demand-side, macro: university reforms and transformations

The reasons:

- Supply-side, micro:

1. Differences in scientific and mathematical abilities and attitudes
2. Differences in family responsabilities (babies)
3. Differences in scientific productivity
4. Differences in self-promotion

- Demand-side, micro: biases in evaluation processes
- Demand-side, meso: resources, networks, segregation, work-place climate.
- Demand-side, macro: university reforms and transformations

The reasons:

- Supply-side, micro:

1. Differences in scientific and mathematical abilities and attitudes
2. Differences in family responsabilities (babies)
3. Differences in scientific productivity
4. Differences in self-promotion

- Demand-side, micro: biases in evaluation processes
- Demand-side, meso: resources, networks, segregation, work-place climate.
- Demand-side, macro: university reforms and transformations

The reasons:

- Supply-side, micro:

1. Differences in scientific and mathematical abilities and attitudes
2. Differences in family responsabilities (babies)
3. Differences in scientific productivity
4. Differences in self-promotion

- Demand-side, micro: biases in evaluation processes
- Demand-side, meso: resources, networks, segregation, work-place climate.
- Demand-side, macro: university reforms and transformations

More on the book:
https://www.carocci.it/prodotto/doppio-standard

More on my current project:
https://wp.unil.ch/wired/

More on me:
www.camillagaiaschi.com

