Cattedra Enrico Fermi 2015-2016

La teoria delle stringhe: l'ultima rivoluzione in fisica?

Gabriele Venezíano

Lezione \# 5.2: 10.12.2015
Un primo sguardo allo spettro del DRM: Temperatura di Hagedorn

Solving the planar duality constraints

Chan's form for the N-point function (1968)

Chan's form for the N -point function is the most direct generalization of the integral form of the Beta function (now called B_{4}) for 4 spinless particles:

$$
\begin{gathered}
B_{4}(-\alpha(s),-\alpha(t))=\int_{0}^{1} d x x^{-1-\alpha(s)}(1-x)^{-1-\alpha(t)} \\
B_{N}=\int_{0}^{1} \prod_{i j} d u_{i j} u_{i j}^{-1-\alpha\left(s_{i j}\right)} \delta(\ldots)
\end{gathered}
$$

where the δ-functions eliminate all but ($\mathrm{N}-3$) integration variables (the maximal number of compatible poles) via the constraints:

$$
1-u_{P}=\prod_{\bar{P}} u_{\bar{P}}
$$

where the product extends to all channels overlapping with P.

Planar duality is very natural from

 a duality diagram viewpoint

Koba-Nielsen form (for special case $\alpha(0)=1$)

The most elegant (and useful) solution to the constraints was given by Z. Koba \& H. Nielsen (1968). Their construction is as follows:
Associate with each external particle a real variable z_{i} ($\mathrm{i}=1,2, \ldots \mathrm{~N}$) and to each planar channel a particular anharmonic ratio of the z 's:

B_{N} is then given by ($w / a, b, c$ chosen arbitrarily):

$$
\begin{aligned}
B_{N} & =\int_{-\infty}^{+\infty} d V(z) \prod_{i, j}\left(z_{i}, z_{i-1}, z_{j}, z_{j+1}\right)^{-1-\alpha\left(s_{i j}\right)} \\
d V(z) & =\frac{\prod d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{\prod\left(z_{i}-z_{i+2}\right) d V_{a b c}} \\
d V_{a b c} & =\frac{d z_{a} d z_{b} d z_{c}}{\left(z_{b}-z_{a}\right)\left(z_{c}-z_{b}\right)\left(z_{a}-z_{c}\right)}
\end{aligned}
$$

$$
\begin{aligned}
B_{N} & =\int_{-\infty}^{+\infty} d V(z) \prod_{i, j}\left(z_{i}, z_{i-1}, z_{j}, z_{j+1}\right)^{-1-\alpha\left(s_{i j}\right)} \\
d V(z) & =\frac{\prod d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{\prod\left(z_{i}-z_{i+2}\right) d V_{a b c}} \\
d V_{a b c} & =\frac{d z_{a} d z_{b} d z_{c}}{\left(z_{b}-z_{a}\right)\left(z_{c}-z_{b}\right)\left(z_{a}-z_{c}\right)}
\end{aligned}
$$

Duality constraints automatically satisfied:
Integrand and integration measure are invariant under projective $O(2,1)$ transformations:

$$
z_{i} \rightarrow \frac{\alpha z_{i}+\beta}{\gamma z_{i}+\delta} ; \alpha \delta-\beta \gamma=1
$$

N.B. Without dividing by $d V_{a b c}$ one would get infinity.

3 z's can be fixed arbitrarily leaving (N-3) integration variables.

$$
\begin{aligned}
B_{N} & =\int_{-\infty}^{+\infty} d V(z) \prod_{i, j}\left(z_{i}, z_{i-1}, z_{j}, z_{j+1}\right)^{-1-\alpha\left(s_{i j}\right)} \\
d V(z) & =\frac{\prod d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{\prod\left(z_{i}-z_{i+2}\right) d V_{a b c}} \\
d V_{a b c} & =\frac{d z_{a} d z_{b} d z_{c}}{\left(z_{b}-z_{a}\right)\left(z_{c}-z_{b}\right)\left(z_{a}-z_{c}\right)}
\end{aligned}
$$

Using relations such as:

$$
\gamma_{i j}=\alpha\left(s_{i j}\right)+\alpha\left(s_{i+1, j-1}\right)-\alpha\left(s_{i+1, j}\right)-\alpha\left(s_{i, j-1}\right)=-2 \alpha^{\prime} p_{i} p_{j}
$$

we collect all the factors that contain a given $\left(z_{i}-z_{j}\right)$ and obtain (for $\alpha(0)=1$!) the standard KN form:

$$
B_{N}=\int_{-\infty}^{+\infty} \frac{\prod d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{d V_{a b c}} \prod_{j>i}\left(z_{i}-z_{j}\right)^{2 \alpha^{\prime} p_{i} \cdot p_{j}}
$$

$$
B_{N}=\int_{-\infty}^{+\infty} \frac{\prod d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{d V_{a b c}} \prod_{j>i}\left(z_{i}-z_{j}\right)^{2 \alpha^{\prime} p_{i} \cdot p_{j}}
$$

Note that the integrand is now independent of the cyclic ordering of the external lines. This only appears in the integration measure through the ordering of the z 's (again only for $\alpha(0)=1$).
A convenient choice for the 3 fixed z 's is:

$$
\begin{gathered}
z_{a}=z_{1}=\infty ; z_{b}=z_{2}=1 ; z_{c}=z_{N}=0 \\
B_{N}=\prod_{3}^{N-1}\left[\int_{0}^{1} d z_{i} \theta\left(z_{i}-z_{i+1}\right)\right] \prod_{i=2}^{N-1} \prod_{j=i+1}^{N}\left(z_{i}-z_{j}\right)^{2 \alpha^{\prime} p_{i} \cdot p_{j}}
\end{gathered}
$$

$$
B_{N}=\prod_{3}^{N-1}\left[\int_{0}^{1} d z_{i} \theta\left(z_{i}-z_{i+1}\right)\right] \prod_{i=2}^{N-1} \prod_{j=i+1}^{N}\left(z_{i}-z_{j}\right)^{2 \alpha^{\prime} p_{i} \cdot p_{j}}
$$

This was the starting point of the original study of the spectrum (FV \& BM, 1969). The simplest way to describe it is by introducing (FGV, N, 1969) an operator formalism:

$$
\begin{gathered}
{\left[q_{\mu}, p_{\nu}\right]=i \eta_{\mu \nu}, \quad\left[a_{n, \mu}, a_{m, \nu}^{\dagger}\right]=\delta_{n, m} \eta_{\mu \nu}, \quad \eta_{\mu \nu}=\operatorname{diag}(-1,1, \ldots, 1)} \\
(n=1,2, \ldots ; \mu=0,1,2, \ldots D-1)
\end{gathered}
$$

They look like our previous harmonic-oscillator operators in D dimensions (that we called N , sorry) except that:

1. For each dimension there is also an infinity of oscillators (corresponding to higher harmonics, as we shall see);
2. One set of them (corresponding to time) has the "wrong" sign: the price for (manifest) relativistic invariance!

One can show (left below for those interested) that a sufficient set of states consists of the eigenstates of momentum and of the occupation numbers of those harmonic oscillators i.e.

$$
\begin{aligned}
\left|N_{n, \mu}, k\right\rangle & \sim \prod_{n, \mu}\left(a_{n, \mu}^{\dagger}\right)^{N_{n, \mu}} e^{i q k}|0\rangle \quad ; \quad a_{n, \mu}|0\rangle=p_{\mu}|0\rangle=0 \\
& -\alpha^{\prime} k^{2}=\alpha^{\prime} M^{2}=-1+\sum_{n, \mu} n a_{n, \mu}^{\dagger} a_{n}^{\mu}
\end{aligned}
$$

(relativisfic analog of E of h.o.)
Because of the "wrong" sign of the time-like c.r., states created by an odd number of time-like operators are ghosts. Was the DRM doomed? One (tiny?) hope remained: all those states were sufficient but perhaps only a (ghost-free?) subset was necessary.
Next week we will see that the ghost killing program indeed works but, once more, at a price!

Proof of factorization (for those interested)

 We shall now rewrite the KN form of B_{N} using our operators. Two essential ingredients are:1) a "field operator" $Q_{\mu}(z)$ and
2) a "vertex operator" $V(z, k)$

$$
\begin{aligned}
Q_{\mu}(z) & =Q_{\mu}^{(0)}(z)+Q_{\mu}^{(+)}(z)+Q_{\mu}^{(-)}(z) ; Q_{\mu}^{(0)}(z)=q_{\mu}-2 i \alpha^{\prime} p_{\mu} \log z \\
Q_{\mu}^{(+)}(z) & =i \sqrt{2 \alpha^{\prime}} \sum_{n=1}^{\infty} \frac{a_{n, \mu}}{\sqrt{n}} z^{-n} ; Q_{\mu}^{(-)}(z)=-i \sqrt{2 \alpha^{\prime}} \sum_{n=1}^{\infty} \frac{a_{n, \mu}^{\dagger}}{\sqrt{n}} z^{n} \\
V(z, k) & =: e^{i k \cdot Q(z)}: \equiv e^{i k \cdot Q^{(-)}(z)} e^{i k \cdot q} e^{2 \alpha^{\prime} k \cdot p l o g z} e^{i k \cdot Q^{(+)}(z)}
\end{aligned}
$$

They satisfy the following operator identities:

$$
\begin{aligned}
& Q_{\mu}(z)= Q_{\mu}^{(0)}(z)+Q_{\mu}^{(+)}(z)+Q_{\mu}^{(-)}(z) ; Q_{\mu}^{(0)}(z)=q_{\mu}-2 i \alpha^{\prime} p_{\mu} \log z \\
& Q_{\mu}^{(+)}(z)= i \sqrt{2 \alpha^{\prime}} \sum_{n=1}^{\infty} \frac{a_{n, \mu}}{\sqrt{n}} z^{-n} ; Q_{\mu}^{(-)}(z)=-i \sqrt{2 \alpha^{\prime}} \sum_{n=1}^{\infty} \frac{a_{n, \mu}^{\dagger}}{\sqrt{n}} z^{n} \\
& V(z, k)= e^{i k \cdot Q(z)}: \equiv e^{i k \cdot Q^{(-)}(z)} e^{i k \cdot q} e^{2 \alpha^{\prime} k \cdot p l o g z} e^{i k \cdot Q^{(+)}(z)} \\
& {\left[Q_{\mu}^{(+)}(z), Q_{\nu}^{(-)}(w)\right]=-2 \alpha^{\prime} \log \left(1-\frac{w}{z}\right) \eta_{\mu \nu} } \\
& V(z, k) V\left(w, k^{\prime}\right)=: V(z, k) V\left(w, k^{\prime}\right):(z-w)^{2 \alpha^{\prime} k \cdot k^{\prime}}
\end{aligned}
$$

leading easily to:

$$
\langle 0| \prod_{i=1}^{N} V\left(z_{i}, p_{i}\right)|0\rangle=(2 \pi)^{D} \delta^{(D)}\left(\sum p_{i}\right) \prod_{i>j}\left(z_{i}-z_{j}\right)^{2 \alpha^{\prime} p_{i} \cdot p_{j}}
$$

Consequently, recalling

$$
B_{N}=\int_{-\infty}^{+\infty} \frac{\prod d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{d V_{a b c}} \prod_{j>i}\left(z_{i}-z_{j}\right)^{2 \alpha^{\prime} p_{i} \cdot p_{j}}
$$

we have the elegant result:
$(2 \pi)^{D} \delta^{(D)}\left(\sum p_{i}\right) B_{N}=\int_{-\infty}^{+\infty} \frac{\prod d z_{i} \theta\left(z_{i}-z_{i+1}\right)}{d V_{a b c}}\langle 0| \prod_{i=1}^{N} V\left(z_{i}, p_{i}\right)|0\rangle$
This looks already nicely factorized. To complete the proof we use the fact that the operator

$$
L_{0}=\alpha^{\prime} p^{2}+\sum_{n, \mu} n a_{n, \mu}^{\dagger} a_{n}^{\mu}
$$

acts on Q as $z d / d z Q$ giving:

$$
V(z, k)=z^{L_{0}-\alpha^{\prime} k^{2}} V(1, k) z^{-L_{0}}=z^{L_{0}-1} V(1, k) z^{-L_{0}}
$$

Using this repeatedly and performing the explicit integrals on z_{i+1} / z_{i} we finally arrive at the desired fully factorized form:

$$
\begin{aligned}
(2 \pi)^{D} \delta^{(D)}\left(\sum p_{i}\right) B_{N} & =\left\langle p_{1}\right| V\left(1, p_{2}\right) D V\left(1, p_{3}\right) D V\left(1, p_{4}\right) D \ldots D V\left(1, p_{N-1}\right)\left|p_{N}\right\rangle \\
D & =\frac{1}{L_{0}-1}
\end{aligned}
$$

In order to factorize this amplitude it's enough to introduce a complete set of harmonic oscillator states before and after a given "propagator" D. This will provide a pole at:

$$
L_{0}=1 \Rightarrow-\alpha^{\prime} p^{2}=\alpha^{\prime} M^{2}=-1+\sum_{n, \mu} n a_{n, \mu}^{\dagger} a_{n}^{\mu}=-1+\sum_{n, \mu} n N_{n, \mu}
$$

In pictures

$$
\begin{aligned}
& (2 \pi)^{D} \delta^{(D)}\left(\sum p_{i}\right) B_{N}=\left\langle p_{1}\right| V\left(1, p_{2}\right) D V\left(1, p_{3}\right) \uparrow P \uparrow V\left(1, p_{4}\right) D \ldots D V\left(1, p_{N-1}\right)\left|p_{N}\right\rangle \\
& D=\frac{1}{L_{0}-1} \\
& \therefore \quad \therefore \quad \begin{array}{l}
\quad \therefore d k\left|N_{n, \mu}, k\right\rangle\left\langle N_{n, \mu}, k\right| \\
\end{array} \\
& \text { (} \\
& L_{0}=1 \Rightarrow-\alpha^{\prime} p^{2}=\alpha^{\prime} M^{2}=-1+\sum_{n, \mu} n a_{n, \mu}^{\dagger} a_{n}^{\mu}=-1+\sum_{n, \mu} n N_{n, \mu}
\end{aligned}
$$

(Over?) counting states

- The mass ${ }^{2}$ condition:

$$
L_{0}=1 \Rightarrow \alpha^{\prime} M^{2}+1=\sum_{n, \mu} n a_{n, \mu}^{\dagger} a_{n}^{\mu}
$$

implies that the number of physical states $w / \alpha^{\prime} M^{2}=(N-1)$ is given by the number of solutions of the equation (in the integers $N_{n, 4}$):

$$
\alpha^{\prime} M^{2}+1=N=\sum_{n, \mu=1}^{D} n N_{n, \mu}
$$

- This is the famous "Partitio Numerorum" problem solved long ago by the Hardy-Ramanujan formula (for $D=1$). A much higher degeneracy than what one was expecting:

$$
d(N)=N^{-p} e^{2 \pi \sqrt{\frac{N D}{6}}}=N^{-p} e^{2 \pi \sqrt{\frac{\alpha^{\prime} D}{6}} M}
$$

- Although unexpected, this was just the behaviour postulated by R. Hagedorn a few years earlier (~ 1965) on a more phenomenological basis (e.g. a Boltzmann factor in the "transverse energy" of particles produced in high energy hadronic collisions). Actually, the true degeneracy will be (after ghosts are eliminated):

$$
d(N)=N^{-p} e^{2 \pi \sqrt{\frac{N(D-2)}{6}}}=N^{-p} e^{2 \pi \sqrt{\frac{\alpha^{\prime}(D-2)}{6}} M}
$$

- Furthermore the value of D will be fixed by consistency
- Taken at face value, such a density of states leads to a limiting (maximal, Hagedorn) temperature (FV, 1969) since: $Z(\beta) \equiv \operatorname{Tr}\left[e^{-\beta H}\right] \sim \int d M d(M) e^{-\beta M} \sim \int d M e^{c M-\beta M}$ diverges for $\beta=1 /\left(k_{B} T\right)<c$ giving the limiting temperature

$$
T_{H}=\frac{1}{2 \pi \sqrt{\alpha^{\prime}}} \sqrt{\frac{6}{D-2}}
$$

i.e. a maximal temperature of order a few hundred MeV (if we set $D=4$ and take for α^{\prime} the experimental value)! Unfortunately, consistency will prevent us from taking $D=4$.

- T_{H} has an interesting reinterpretation in QCD as a deconfining temperature (quarks no longer bound inside hadrons)
- In string theory such an interpretation, so far, is absent.

