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Solving the planar duality 
constraints
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Chan’s form for the N-point function (1968)
Chan’s form for the N-point function is the most 
direct generalization of the integral form of the Beta 
function (now called B4) for 4 spinless particles:

where the δ-functions eliminate all but (N-3) integration 
variables (the maximal number of compatible poles) via 
the constraints:

     
 where the product extends to all 
 channels overlapping with P.
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Planar duality is very natural from  
a duality diagram viewpoint

    compatible, non 
overlapping channels

    incompatible, 
overlapping channels

There are (N-3) mutually 
compatible channels



(zi, zi�1, zj , zj+1)

⇥ (zi � zj)(zi�1 � zj+1)
(zi�1 � zj)(zi � zj+1)
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Koba-Nielsen form (for special case α(0) =1)

The most elegant (and useful) solution to the 
constraints was given by Z. Koba & H. Nielsen (1968).  
Their construction is as follows: 
Associate with each external particle a real variable zi  
(i = 1, 2, ... N) and to each planar channel a particular 
anharmonic ratio of the z’s:
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(zi, zi�1, zj , zj+1)
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BN is then given by (w/ a,b,c chosen arbitrarily):
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BN =
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Integrand and integration measure are invariant 
under projective O(2,1) transformations:

N.B. Without dividing by dVabc one would get infinity. 
3 z’s can be fixed arbitrarily leaving (N-3) integration 
variables. 

Duality constraints automatically satisfied:
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Using relations such as:

⇥ij = �(sij) + �(si+1,j�1)� �(si+1,j)� �(si,j�1) = �2�⇥pipj

we collect all the factors that contain a given (zi-zj) 
and obtain (for α(0) =1!) the standard KN form:
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Note that the integrand is now independent of the cyclic 
ordering of the external lines. This only appears in the 
integration measure through the ordering of the z’s 
(again only for α(0) =1). 
A convenient choice for the 3 fixed z’s is: 



(n = 1, 2, . . . ; µ = 0, 1, 2, . . . D � 1)
[qµ , p⇥ ] = i⇥µ⇥ , [an,µ , a†m,⇥ ] = �n,m⇥µ⇥ , ⇥µ⇥ = diag(�1, 1, . . . , 1)

10

BN =
N�1⇤

3

�⌅ 1

0
dzi�(zi � zi+1)

⇥ N�1⇤

i=2

N⇤

j=i+1

(zi � zj)2��pi·pj

This was the starting point of the original study of the 
spectrum (FV & BM, 1969). The simplest way to 
describe it is by introducing (FGV, N, 1969) an operator 
formalism:

They look like our previous harmonic-oscillator operators in 
D dimensions (that we called N, sorry) except that: 
1. For each dimension there is also an infinity of oscillators 

(corresponding to higher harmonics, as we shall see); 
2. One set of them (corresponding to time) has the “wrong” 

sign: the price for (manifest) relativistic invariance!
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One can show (left below for those interested) that a 
sufficient set of states consists of the eigenstates of 
momentum and of the occupation numbers of those harmonic 
oscillators i.e.

Because of the “wrong” sign of the time-like c.r., states 
created by an odd number of time-like operators are ghosts.  
Was the DRM doomed? One (tiny?) hope remained: all those 
states were sufficient but perhaps only a (ghost-free?) subset 
was necessary. 
Next week we will see that the ghost killing program indeed 
works but, once more, at a price! 

(relativistic analog of E of h.o.)



V (z, k) =: eik·Q(z) : � eik·Q(�)(z) eik·q e2�⇥k·plogz eik·Q(+)(z)

Qµ(z) = Q(0)
µ (z) + Q(+)

µ (z) + Q(�)
µ (z) ; Q(0)

µ (z) = qµ � 2i�⇥pµlogz

Q(+)
µ (z) = i

⇥
2�⇥

⇤�

n=1

an,µ⇥
n

z�n ; Q(�)
µ (z) = �i

⇥
2�⇥

⇤�

n=1

a†n,µ⇥
n

zn

12

Proof of factorization (for those interested)
We shall now rewrite the KN form of BN using our 
operators. Two essential ingredients are: 
 1) a “field operator” Qµ(z) and 
 2) a “vertex operator” V(z, k)

They satisfy the following operator identities:
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leading easily to:
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Consequently, recalling
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we have the elegant result:

This looks already nicely factorized. To complete the 
proof we use the fact that the operator

acts on Q as z d/dz Q giving:
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Using this repeatedly and performing the explicit 
integrals on zi+1/zi we finally arrive at the desired fully 
factorized form:

In order to factorize this amplitude it’s enough to 
introduce a complete set of harmonic oscillator states 
before and after a given “propagator” D. This will 
provide a pole at:
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In pictures



(Over?) counting states
• The mass2 condition:
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• This is the famous “Partitio Numerorum” problem solved long 
ago by the Hardy-Ramanujan formula (for D =1). A much 
higher degeneracy than what one was expecting:

implies that the number of physical states w/α‘M2= (N-1) is 
given by the number of solutions of the equation (in the 
integers Nn,µ):

L0 = 1 ) ↵0M2 + 1 =
X

n,µ

n a†n,µ aµn

↵0M2 + 1 = N =
DX

n,µ=1

nNn,µ



• Although unexpected, this was just the behaviour 
postulated by R. Hagedorn a few years earlier (~1965) on a 
more phenomenological basis (e.g. a Boltzmann factor in the 
“transverse energy” of particles produced in high energy 
hadronic collisions). Actually, the true degeneracy will be 
(after ghosts are eliminated):
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• Furthermore the value of D will be fixed by consistency
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i.e. a maximal temperature of order a few hundred MeV (if 
we set D=4 and take for α’ the experimental value)! 
Unfortunately, consistency will prevent us from taking D =4. 

• TH has an interesting reinterpretation in QCD as a 
deconfining temperature (quarks no longer bound inside 
hadrons) 

• In string theory such an interpretation, so far, is absent. 
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• Taken at face value, such a density of states leads to a 
limiting (maximal, Hagedorn) temperature (FV, 1969) since:

diverges for β = 1/(kBT) < c giving the limiting  temperature 


