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!

Complementi tecnici
!

1. Equivalenza delle due formulazioni 
2. I vincoli nella formulazione di Polyakov. 
3. Algebra classica dei vincoli 
4. Aggiunta di cariche nella formulazione di Polyakov 
5. Quantizzazione: 

• Quantizzazione sul cono luce 
• Quantizzazione alla Polyakov (solo note) 
• Quantizzazione alla BRST (solo note) 
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There is a nice way to deal with both the massive and the 
massless case. It uses an extra field playing the role of the 

metric (actually: e2 = -g00) of a 1-dimensional GR.

Using the eom for e:
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we can eliminate it and show the classical equivalence of 
the two formulations.
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ẋ

µ
ẋ
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Equivalenza classica: 1. Point particle	

It is also easy to prove that .
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2. Polyakov’s formulation of the bosonic string	

After expressing γαβ in terms of Xµ and Gµν using its eom: 

one gets back the NG action (where γαβ was NOT an 
independent field):

This is what we get up to a conformal factor that drops out
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the constraints following from the eom of γαβ:

one can easily prove the constraints:

Absorbing a factor T in the definition of G:

can be easily written w/out choosing any gauge. Defining 
as usual the canonical momentum conjugate to X:

Recovering the constraints in Polyakov’s formulation	
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For the Hamiltonian constraint the check is a little less 
trivial. Note that only this latter constraint contains 
explicitly the space-time metric.

For the momentum constraint the check is quite trivial:

As Dirac taught us long ago we should check the algebra 
of the constraints (via classical Poisson brackets). It is 
useful to take the sum and the difference of the 
constraints:

One then finds:

Mixed P.B. vanish.
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Aggiungendo l’interazione con un campo elettromagnetico:
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!
si vede come quest’ultimo non necessita l’introduzione di 
“e”. Analogamente si può aggiungere a SP l’interazione con 
un tensore anti-simmetrico Bµν e si ottiene (avendo 
assorbito qualche fattore in G): 

!
si vede come quest’ultimo non necessiti l’introduzione di γαβ. 
Notare altrimenti come G e B entrino in modo simile 
nell’azione. 
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Aggiunta di cariche
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ãn,µ⇥

n
e�2in(⇤+⇥) �
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Quantization (open string)
In order to quantize the string we proceed as in any QFT 

and promote X and P to non-commuting operators:

Using the standard h. osc. c.r. we get the desired result:

The only tricky things to take care of are the constraints!
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1. Light-cone quantization  
(Goddard, Goldstone, Rebbi & Thorn, 1972)

The residual freedom to perform conformal transformations:

⇥ ± � ⇥ f±(⇥ ± �)
allows us to (almost completely) fix one of the coordinates. 

For the rigid rod we took X0 = Aτ, but for the general case it 
is more useful to fix instead:

The constraints can be solved for X- since one must have:
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These equations allow to express the a-n oscillators in terms 
of the transverse ones (while the a+n are zero). Note that 
the a-n oscillators become bilinear in the transverse ones. 

Therefore in this gauge we were able to solve the 
constraints and to reduce the physical spectrum to the one 

generated by (D-2) space-like oscillators. 
At this point it looks as if we managed to eliminate all the 

ghosts without getting any constraint on α0 or on D.  
The problem is that the l.c. gauge breaks explicit Lorentz 
invariance: we have to check that L.I. is still there, even if 

hidden ...
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A Lorentz anomaly?
We have to check the O(D-1,1) Lorentz algebra:

The check is easy for the compact O(D-2) subgroup (Lij are 
bilinear in the oscillators) but becomes non-trivial for the 

components of the Lorentz generators involving the ± 
directions (these may involve three oscillators). In particular 
[M+i, M+j] should vanish (recall that η++ = 0) while a long but 

straightforward calculation by GGRT gives: 

We thus find that the Lorentz algebra is broken unless α0 =1 
and D = 26, i.e. the same conditions we found in the DRM!
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P. started from the formal path integral: 

Since the action is invariant under 2D diffs and Weyl this 
integral if actually infinite. We have to fix the gauge and 
define the functional integral over a gauge-slice. In order 
to get a result independent of the slice/gauge, we have to 
add a Fadeev-Popov determinant, i.e. the Jacobian for 
going from [d3γ] to [d3ζ] where ζi  are 3 gauge-transf. 
parameters:   

!
2. Polyakov’s approach
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But do we really get a result which does not depend on the 
gauge? We have to compute carefully the integral. This is 
done by introducing anticommuting fields (called FP ghosts 
but with nothing to do with our previous ghosts), since 
integrals over (bosons)fermions give (1/det) det of the 
operators appearing in their quadratic actions.

The result of this rather non-trivial calculation is the 
following: one can regularize the theory in such a way that 
2d-diffs are preserved. That means that Z will depend, at 
most, on the conformal factor appearing in: 

��⇥ ! e2⇤(⌅,⇧)��⇥



“Z” =

Z
[dXd�] exp (�SE(X, ��⇥))

Z =

Z
[dXd�]

Vdiff.⇥Weyl
exp (�SE(X, ��⇥))

�FP (⇥�, �̂)
�1 = �FP (�, �̂)

�1

�FP (�, �̂)
�1 ⇥

Z
[d⇤]⇥(⇤� � �̂) = |det⌅⇤�

⌅⇤
|�1
⇥�=�̂

Z =

Z
[dXd�]

Vdiff.⇥Weyl
exp (�SE(X, ��⇥)) =

Z
[dX]�FP (�̂, �̂) exp (�SE(X, �̂))

�FP (�̂, �̂) = |det⇤⇥�
⇤⇥

|⇥�=�̂ =

Z
[dbidc

i] exp

"
bi

✓
⇤⇥�

⇤⇥
(⇥� = �̂)

◆

ij

cj
#

14

A correct derivation should be as follows: 

Defining 

By the invariance of the group measure

and we obtain

replaced by

Finally:
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This can be written in a covariant (but non-local) form:

Indeed one finds (Polyakov 1981)

The non-invariance of the action wrt Weyl transformations 
can also be translated into a statement about the non-
vanishing of the trace of Tαβ. One finds:

since for a conformally flat 2d-metric:

In order to get also the constraint on α0 one needs to 
consider interactions... 
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3. The BRST Hamiltonian approach	

Starting from the constraints and their algebra:
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Note that: 
a. The algebra does not depend on the background metric 
b. The algebra closes on the constraints themselves with 
constant coefficients. 
c. The canonical Hamiltonian is zero. 
a. and b. allow to quantize the system following a 
simplified Batalin-Fradkin-Vilkovisky approach.              
For a finite set of (bosonic) constraints Gi with algebra:

1. Introduce a pair of conjugate Grassmann variables  
(ci, bi) for each Gi with 

2. Construct a (classically nilpotent) BRST operator Q: 
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3 Choose a gauge-fixing fermion χ and obtain the “total” 
Hamiltonian as:

4. Quantize canonically insisting on finiteness and check 
that the classical properties (in particular Q2 =0) still 
hold. If so you win (if not you have a gauge anomaly...) and: 
i. Physical operators are those commuting with Q,  
ii. Physical states are annihilated by Q. 
iii Q acting on any state gives a “decoupled” physical state 
iv Matrix elements between physical states do not depend 
on the choice of χ 

It commutes with Q.
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In the case of the bosonic string, generalizing the 
procedure to an infinite set of constraints, we find:

For a non-trivial metric the check of Q2=0 is very non-
trivial but for a flat space-time it’s relatively easy. 
Consider just the + sector. Anomalies come from “double 
contractions” e.g. 

Mixed products do not give anomalous contributions, but 
squares of b-c terms do. Schematically:
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Insisting that all terms cancel (even those with milder 
small-distance behavior) gives back both D = 26 and α0 =1

Integrating by parts (and keeping careful track of signs) 
one can see a “13”  emerging...


