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Particella puntiforme 
relativistica con massa
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The action for a (massive) relativistic particle can be 
written in a general (but given, fixed) spacetime metric 

gµν(x) and for any D as: 

The action of a point-particle is thus proportional (with mc 
as the proportionality constant) to the proper length of 
the “world-line” described by the particle’s motion and 
parametrized by xµ(τ). The classical motion is the one 
minimizing that length (a geodesic in the given metric).
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Different particles can be introduced by adding similar 
terms each one with its own mass. 
Interactions among particles are highly non unique and not 
always very easy to introduce, particularly if we want them 
among particles and local.  
Instead, interactions with an electromagnetic field is easy 
to add via a term:

NB: un punto materiale si accoppia in modo “naturale” (senza 
invocare la metrica) a un campo vettoriale, una 1-forma.
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La stringa bosonica nella  
formulazione di Nambu-Goto
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!
Nambu (and independently Goto) wrote a geometric action 
proportional to the area of the surface (“world-sheet” in 
analogy with “world-line”) swept by the string. T, the string 
tension, is the proportionality constant. Has dimensions of 
energy/length. 

!
 The string motion is parametrized by Xµ(σ, τ) where: 
µ = 0, 1, ... D-1; 0 < σ < π (by convention), τ unconstrained. 

The Nambu-Goto action for the relativistic string is a 
straightforward generalization of the previous action
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!
NG did this in Minkowski spacetime (gµν(x) =ηµν(x)) but, like 

for point particles, the construction can be easily 
generalized to an arbitrary metric Gµν(x) and to any D.

where γαβ is the “induced metric” 
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Again by analogy with the point-particle, the classical 
motion of the string is obtained by varying the action and 
corresponds to minimizing the area of the surface swept.  
But, unlike in the case of point-particles, the problem is 
already non trivial even in Minkowski space-time (at the 
quantum level).

Another major difference: for point particles we can add in 
the action different particles of different mass thus 
introducing many free parameters. 
Also, interactions among particles have to be added by hand 
(and it is not so simple!) and are quite arbitrary. 
This is not the case for the string: there is just one T and 
interactions are automatically included in a “geometric” way!
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What’s the analog of the electromagnetic coupling of a 

particle for a string?

where εαβ is the 2-d Levi-Civita tensor and Bµν = - Bνµ is an 
antisymmetric tensor field, a 2-form. Strings are naturally 

“charged” wrt such a field.   
Note again the absence of ugly square roots…
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The classical constraints
Sp is invariant under reparametrization of the world-line,  

τ-> τ’(τ). This leads to 1 constraint (easy to check):

Similarly, SNG is invariant under reparametrization of the 
world-sheet by an arbitrary redefinition ξα ->ξ’α(ξα)  

This leads now to 2 constraints (easy again to check):
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Ẋµ(�) � ⇧Xµ(�)
⇧⇤

, X �µ(�) � ⇧Xµ(�)
⇧⇥

11

!

Strings in Minkowski spacetime: 
action and equations of motion

Since classical string motion (and even more quantization) 
is already non-trivial in Minkowski spacetime let us 

consider that case (also needed for connection with DRM) 
but let’s keep the dimensionality of spacetime D arbitrary. 

becomes:
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The equations of motion for the point-particle are trivial 
while for the string they look quite frightening:
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Boundary conditions!
We need, at all τ, 

For open strings we have two options  
(that can be used independently for each µ): 

For closed strings the points σ = 0 and σ = π are physically 
the same point. If spacetime is topologically trivial this 

implies Xµ(0, τ) = Xµ(π, τ) and the b.c. is satisfied.

Neumann b.c.  

Dirichlet b.c.  

For the moment we will consider N. b.c. for open strings
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A convenient choice of coordinates
There is a lot of freedom in the choice of the two WS 
coordinates (σ, τ). It can be used to impose two useful 

conditions (defining the orthonormal gauges):

The equations of motion become simply:

w/ solution:
The boundary conditions for open strings also simply: 

N b.c.  
    
D b.c. 

X 0µ = 0 , � = 0,⇡

Ẋµ = 0 , � = 0,⇡
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ãn,µ⇥

n
e�2in(⇤+⇥) �
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General solution of

Closed strings Xµ(σ=0) = Xµ(σ=π)  

Open (Neumann) strings ( X’µ(σ=0, π) =0). Def. 2πα’= 1/T 

to be added 
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Simplest classical solution: 
open string, the rotating rod

The equations to be solved are

subject to the constraints

and to the b.c.

Ends move with speed of light. A simple solution  is:

e.o.m., constraints and b.c. easily checked!



X0 = A⇥ ; X1 = A cos⇥ cos� , X2 = A sin⇥ cos�

Xi = 0 , (i = 3, 4, . . . D � 1)

r �
�

X2
1 + X2

2 = A|cos�|

17

A rigid, rotating rod whose ends move with the speed of 
light since dl/dX0 = r dθ/Ad τ = r/A = |cosσ|.

X1

X2

σ= 0σ= π τ= 0σ= π/2

θ= τ

Let us now compute the energy (mass) and angular 
momentum of this classical string.
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It is quite obvious that this solution maximizes the ratio 
J/M2 . The relation is very similar to the one given by the 
linear Regge trajectory we have been discussing in DRM.  

X0 = A⇥ ; X1 = A cos⇥ cos� , X2 = A sin⇥ cos�

Xi = 0 , (i = 3, 4, . . . D � 1)

thus
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For closed strings one finds the same relation between J 
and M2  except for T --> 2 T (simple interpretation: for 

the same total length the closed string is half as big since 
it has to “come back on itself”). Hence α’ -> 1/2 α’ 

Yet classical strings and DRM differ in crucial way. 
In the classical theory, J and M2 can take any real value 
with J < α’M2 => classical strings cannot have J without 
having mass! But in the DRM there were such states:

J

M2

J

M2

2 h
h

open
open closed

closed

classical 
strings DRM

α’

1/2α’
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• The discrepancy between strings and the DRM 
disappears completely once we move from classical to 
quantum strings. 

• This is where points and strings start to differ in a 
fundamental, qualitative way. 

• Point particles can be quantized in an arbitrary 
background metric. This turns out not to be true for 
strings! 

• As we shall see, even flat spacetime is in general 
forbidden... unless D takes a (so-called) critical value! 

• String quantization is not trivial and can be done in many 
different ways. But the end result is always the same. 

!


