
1

La teoria delle stringhe:
l’ultima rivoluzione in fisica?

Gabriele Veneziano

Condizioni per “esorcizzare” il DRM 
Una stringa ben nascosta? 

La stringa classica di Nambu-Goto

Lezione # 6.1: 17.12.2015

Cattedra Enrico Fermi 2015-2016



2

Punti principali dell’ultima lezione 
• Dopo un breve richiamo dell’oscillatore armonico e 

sua quantizzazione abbiamo introdotto il DRM 
come estensione della funzione Beta a processi 
che coinvolgono un numero arbitrario di particelle. 

• Dalle proprietà di queste si trova un’insieme 
sufficiente di stati per descrivere lo spettro della 
teoria. 

• Caratteristiche principali dello spettro: 
degenerazione esponenziale (nella massa dello 
stato) e possibile presenza di stati a norma (prob. 
di produzione) negativa.
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Piano della lezione 
!

• Condizione di Virasoro e vincolo sul D 
• Indicazioni a favore di una stringa sottostante 
• La stringa classica di Nambu-Goto 

******* 
• Fermioni, GSO, supersimmetria 
• Problemi fenomenologici e sopravvento di QCD
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A sufficient set of states consists of the eigenstates of 
momentum and of the occupation numbers of an infinite set 
of harmonic oscillators:

Because of the “wrong” sign of the time-like c.r., states 
created by an odd number of time-like operators are ghosts.  
One hope remained: all those states were sufficient but 
perhaps only a (ghost-free?) subset was necessary. 

(relativistic analog of E of h.o.)

(n = 1, 2, . . . ; µ = 0, 1, 2, . . . D � 1)
[qµ , p⇥ ] = i⇥µ⇥ , [an,µ , a†m,⇥ ] = �n,m⇥µ⇥ , ⇥µ⇥ = diag(�1, 1, . . . , 1)



In the FV69 paper the following (so-called “spurious”) states 
were found to be unnecessary (for any value of α(0)):

This was hopefully sufficient to eliminate the ghosts created 
by the time component of a+

1. But what about all others?  
The situation looked almost desperate... until Virasoro (1969) 
made a crucial discovery. Iff α(0) = 1 one could enlarge 
enormously the space of “spurious” states to:

=> for α(0) =1, there was a chance to eliminate all the ghosts! 
These, plus their h.c. L+m, are the Virasoro operators!

(with |X> any state)

(with m=1,2,..)
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The “ghost hunting” project was a “tour de force” that 
culminated in the proof of a “no-ghost theorem” by R. Brower 
and, independently, by P. Goddard & Ch.Thorn. 
  
At the basis of the theorem was the discovery (Fubini-
Veneziano-Weis, 1970) of the infinite-dimensional Virasoro 
algebra (of which the previous O(2,1) symmetry is a subgroup 
generated by L0, L1 , L-1 ) and the explicit construction of an 
infinite set of positive-norm physical (Di Vecchia-Del Giudice-
Fubini or DDF) states (using only D-2 components of the 
operators)
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There were a couple of heavy prices to pay for the absence 
of ghosts: the Regge intercept, α0, had to be exactly 1 
(implying a massless spin one particle and a spin zero 
“tachyon”) and D had to be less than or equal to 26 (this was 
only checked later, after Lovelace’s observation, see below). 
At exactly D=26 the physical Hilbert space would be 
completely spanned by the DDF states corresponding to 
oscillators in (D-2)=24 dimensions. At D<26 one needed 
additional (so-called Brower) states. 
Meanwhile, C. Lovelace had shown that loops were consistent 
with unitarity only if D=26! Had he gone crazy?  

For D=26 and α0=1 the model looked consistent except for 
the presence of a tachyon (M2 = -1/α’).
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It took a while before it was realized that the DRM was a 
theory of strings. Till about 1972 it looked like a very strange 
kind of object, mysteriously different from anything that had 
been seen before, like QFT or GR. 
As such it polarized the community with the opponents 
(particularly within the establishment) outnumbering the 
(mostly young but with exceptions) enthusiasts. 

(For earlier attitudes towards DRM, read  
Louis Clavelli: http://bama.ua.edu/~lclavell/Weston/) 
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!

Missed hints of an underlying string? 
!

1. From linear Regge trajectories  
2. From duality diagrams 
3. From the harmonic oscillators 
4. From the DDF «transverse» states
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From linear Regge trajectories

−n

J/h

s=M2

α’ = dJ/dM2  ~ 10-13 cm/GeV ~ constant.  
Its inverse, 1013 GeV/cm,  has dimensions of a string tension 
(NB, c=1 but no h needed)!

1

Typical trajectories in potential 
scattering  

(or in the QFTs of the time)
DRM’s 

trajectory
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From the harmonic oscillators
This was a very clear hint since a string is a collection of 
harmonic oscillators of integer frequencies (wrt a 
fundamental one).

From DDF «transverse» states
The physical vibrations of a string are orthogonal to the 
string itself: the number of physical dof should therefore 
be proportional to (D-2), like for the DDF states.
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The Nambu-Goto action

After some incomplete attempts to formulate a string 
theory that would reproduce the DRM (Nielsen, Susskind, 
Nambu), a decisive step forward was made in 1970-’71 by 
Nambu and, independently, by Goto.  
They wrote a geometric action for the classical relativistic 
string in strict analogy with the well-known action of the 
relativistic particle. 
This was the true birth of String Theory although, for the 
moment, just at the classical level. 
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The Nambu-Goto action

The Nambu-Goto action for the relativistic string is the 
straightforward generalization of the well-known action of 

a relativistic particle. 
The latter can be written in a general (but given, fixed) 

spacetime metric gµν(x) and for any D as: 
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The action of a point-particle is thus proportional (with mc 
as the proportionality constant) to the proper length of 
the “world-line” described by the particle’s motion and 
parametrized by xµ(τ). The classical motion is the one 
minimizing that length (a geodesic in the given metric).
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!
In complete analogy, for a relativistic string NG wrote a 
geometric action proportional to the area of the surface 
(“world-sheet” in analogy with “world-line”) swept by the 
string. T, the string tension, is the proportionality constant. 

!
 The string motion is parametrized by Xµ(σ, τ) where: 
µ = 0, 1, ... D-1; 0 < σ < π (by convention), τ unconstrained. 
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!
NG did this in Minkowski spacetime (gµν(x) =ηµν(x)) but, like 

for point particles, the construction can be easily 
generalized to an arbitrary metric Gµν(x) and to any D.

where
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!
Again by analogy with the point-particle, the classical 
motion of the string is obtained by varying the action and 
corresponds to minimizing the area of the surface swept.  
But, unlike in the case of point-particles, the problem is 
already non trivial even in Minkowski space-time (at the 
quantum level).

Another major difference: for point particles we can add in 
the action different particles of different mass thus 
introducing many free parameters. 
Also, interactions have to be added by hand (and it is not so 
simple!) and are quite arbitrary. 
This is not the case for the string: there is just one T and 
interactions are automatically included in a “geometric” way!



Postponing constraints, 
boundary conditions… 
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A convenient choice of coordinates
There is a lot of freedom in the choice of the two WS 
coordinates (σ, τ). It can be used to impose two useful 

conditions (defining the orthonormal gauges):

The equations of motion become simply:

w/ solution:
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ã⇥n,µ⇥
n

e2in(⇤+⇥)

⇥

21

General solution of

Closed strings Xµ(σ=0) = Xµ(σ=π)  

Open (Neumann) strings ( X’µ(σ=0, π) =0). Def. 2πα’= 1/T 

to be added 
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Simplest classical solution: 
open string, the rotating rod

The equations to be solved are

subject to the constraints

and to the b.c.

Ends move with speed of light. A simple solution  is:

e.o.m., constraints and b.c. easily checked!



X0 = A⇥ ; X1 = A cos⇥ cos� , X2 = A sin⇥ cos�
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A rigid, rotating rod whose ends move with the speed of 
light since dl/dX0 = r dθ/Ad τ = r/A = |cosσ|.

X1

X2

σ= 0σ= π τ= 0σ= π/2

θ= τ

Let us now compute the energy (mass) and angular 
momentum of this classical string.
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It is quite obvious that this solution maximizes the ratio 
J/M2 . The relation is very similar to the one given by the 
linear Regge trajectory we have been discussing in DRM.  

X0 = A⇥ ; X1 = A cos⇥ cos� , X2 = A sin⇥ cos�

Xi = 0 , (i = 3, 4, . . . D � 1)

thus
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For closed strings one finds the same relation between J 
and M2  except for T --> 2 T (simple interpretation: for 

the same total length the closed string is half as big since 
it has to “come back on itself”). Hence α’ -> 1/2 α’ 

Yet classical strings and DRM differ in crucial way. 
In the classical theory, J and M2 can take any real value 
with J < α’M2 => classical strings cannot have J without 
having mass! But in the DRM there were such states:

J

M2

J

M2

2 h
h

open
open closed

closed

classical 
strings DRM

α’

1/2α’
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• The discrepancy between strings and the DRM 
disappears completely once we move from classical to 
quantum strings. 

• This is where points and strings start to differ in a 
fundamental, qualitative way. 

• Point particles can be quantized in an arbitrary 
background metric. This turns out not to be true for 
strings! 

• As we shall see, even flat spacetime is in general 
forbidden... unless D takes a (so-called) critical value! 

• String quantization is not trivial and can be done in many 
different ways. But the end result is always the same. 

• Lovelace had not gone crazy… 



Pausa ?
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Alcuni dettagli che saranno 
ripresi nella seconda parte
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The classical constraints
Sp is invariant under reparametrization of the world-line,  

τ-> τ’(τ). This leads to 1 constraint (easy to check):

Similarly, SNG is invariant under reparametrization of the 
world-sheet by an arbitrary redefinition ξα ->ξ’α(ξα)  

This leads now to 2 constraints (easy again to check):
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Strings in Minkowski spacetime: 
action and equations of motion

Since classical string motion (and even more quantization) 
is already non-trivial in Minkowski spacetime let us 

consider that case (also needed for connection with DRM) 
but let’s keep the dimensionality of spacetime D arbitrary. 

becomes:
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⇤Ẋµ
= T
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⇤L

⇤X �µ = T
X �
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The equations of motion for the point-particle are trivial 
while for the string they look quite frightening:
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Boundary conditions
Boundary conditions are very important and they differ in a 
crucial way for open and closed strings. We need, at all τ, 

For open strings we have two options: 

For closed strings the points σ = 0 and σ = π are physically 
the same point. If spacetime is topologically trivial this 

implies Xµ(0, τ) = Xµ(π, τ) and the b.c. is satisfied.

Neumann b.c.  

Dirichlet b.c.  

For the moment we will consider N. b.c. for open strings


