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Sketch of Regge’s theory of complex J!

Consider non-relativistic potential scattering. 
Expand the scattering amplitude in partial waves:

!

• In 1959 Tullio Regge had the bold idea of looking at 
AJ(E) as an analytic function of complex J. He 
found that, quite generically, there were poles in J 
at an energy-dependent position i.e. at J =α(E):

!

α(E) is called a Regge trajectory
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!
One “Regge trajectory” connects particles/

resonances  with different J => “nuclear democracy”.

i.e. just the contribution of a single resonance of energy En.
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Assume α(E) to go through a positive integer n at E = En.
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A(s, t) =
��

J=0

AJ(t)PJ(cos�t) ; cos�t = 1 + 2s/t

s = �(p1 + p2)2 = �(p3 + p4)2

t = �(p1 � p3)2 = �(p2 � p4)2

u = �(p1 � p4)2 = �(p2 � p3)2

s + t + u =
�

m2
i
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Chew-Mandelstam’s application of Regge 
theory in relativistic scattering

In s-channel region expand A(s,t) in t-channel 
partial waves:

At large s > 0  & fixed t < 0, the contribution of the Jth 
term grows like sJ . The series is badly divergent but, 
under some assumptions, can be extended analytically
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!

The sum diverges but can be analytically continued 
using a trick due to Froissart & Gribov

!

                   where the contour C is as in the figure.       
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                     Use now the large-z limit of PJ(z):       

!

                     Complex-J plane, PJ continued as well       
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Deforming the contour from C to C’ to C’’ (which 
includes the little circle around the rightmost 

Regge pole) we get, from the latter:
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!

                   the rest is controlled by the next pole..       
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Note that Regge theory gives, in general a complex scattering 
amplitude while usual single particle exchanges do not. 

Interpreting this imaginary part turned out to be crucial.

A very interesting experimental discovery of the sixties was 
the shape of the Regge trajectories:
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The exception: vacuum 
q.n. trajectory (Pomeron)

N**

Unlike in potential scattering they turned out 
to be amazingly linear and parallel

NB: which αi contribute to a given process depends 
on its t-channel quantum numbers (the channel 

whose Mandelstam variable is kept fixed )

dJ/dt ~ 0.9 GeV-2


