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!
“Cercherò di tenere una via di mezzo, evitando un 
eccessivo formalismo matematico, ma cercando di far 
passare le principali idee fisiche” 
!
“Aggiusterò il tiro, e di conseguenza anche il 
programma, secondo la risposta del pubblico” 

Dalla prima lezione…

!
Andremo più lentamente la prima ora lasciando alcuni 
dettagli più tecnici, per chi è interessato, alla seconda 
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Sempre dalla prima lezione  
la tavola completa 
(per completezza)
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Gauge quantum numbers in theSM  
(one family of left-handed fermions)

SU(3) SU(2) U(1)
(u,d) = Q 3 2 1/6
( 1 2 -1/2
u 3* 1 -2/3
d 3* 1 +1/3
e 1 1 +1
( 1 2 1/2

+ the c.c. fields, including Φ*= (φ0*, φ-) + two more fermion 
families + sterile neutrinos? 
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In questa prima parte del corso ci 
concentreremo sulle interazioni forti 

spengendo a mano quelle elettrodeboli. 
 Questo ci da, apparentemente, un’enorme 

semplificazione
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SU(3)

u 3

d 3

u 3*

d 3*

Gauge quantum numbers in QCD 
(one family of left-handed quarks)

+ r.h. antiparticles + 8 gluons of SU(3).
looks deceptively simple …
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La QCD, sebbene predittiva e colma di 
successi per una classe di osservabili, 

resta una teoria estremamente complessa. 
Vedremo come prese il sopravvento sulla 

stringa adronica degli anni sessanta-
settanta ma anche come, in un certo limite, 
essa stessa debba ridursi a una teoria di 
stringhe, teoria ancora tutta da scoprire
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VERO INIZIO DEL CORSO
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(Fermi)

(Models)

(GR)

Status in the mid sixties 
(with Michelin-star grading)
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STRONG INTERACTIONS  
in the 60s

No Theory, rather: 
A handful of models capturing one or another aspect 

of hadronic physics e.g. 
•Short range i.e. no massless particles (Yukawa 1935) 
•Symmetries, conservation laws (parity, SU(2)I, 
SU(3)F) making them, in principle, simpler. 

•Many metastable states (resonances) extending to 
large m and J: an ever increasing zoo?
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Why did we take the wrong way?
A QFT approach looked hopeless: 

The game at the time was to associate fields with 
particles (stable or not) you do observe. But then: 

1. Too many d.o.f. => too many fields 
2. High-J QFT’s are pathological (J=2 is already bad-

enough!)	

An S-matrix approach looked more promising. 

In line with “stick to what you measure” philosophy
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The S-matrix (Heisenberg 1943)

i f

• Symmetries: easy to implement on S 
• Causality => analyticity, dispersion relations 
• Crossing : see below 
• Conservation of Probability: 
   Unitarity constraint:

Equivalently: S = operator evolving |i> to S|i>

X

f

|Sfi|2 = 1

Sfi = complex number ; |Sfi|2 = probability for i ! f



Cluster decomposition (valid for short range forces) gives S as 
a trivial plus a non-trivial (scattering) term: 

!
!

!
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= + i

where A is an ordinary function of variables associated with 
the external momenta. Lorentz invariance restricts the 
quantities A can depend upon. Finally, impose energy-
momentum conservation and the fact that the external (initial 
and final) particles have definite mass (on-shell cond.s).

Sfi = �fi + iTfi = �fi + i�(4)
⇣X

pi �
X

pf
⌘
Afi

In pictures for 2->2 scattering (denoting T by a blue blob):



s = �(p1 + p2)2 = �(p3 + p4)2

t = �(p1 � p3)2 = �(p2 � p4)2

u = �(p1 � p4)2 = �(p2 � p3)2

s + t + u =
�

m2
i

Bottom line: relativistic 2-body scattering 
amplitude A depends on just 2 independent 

variables, s and t. 
Better: 3 variables with one linear relation:

p1

p2

p3

p4

s,t,u are the so-called Mandelstam variables 
Their meaning will become clearer in a moment 
NB: we use the metric (-,+,+,+): p2 = - p02+ p12 + p22 + p32 
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Analyticity 
A consequence of causality is that A(s,t) is an analytic 
function of its arguments. 
An analytic function f(z) satisfies many amazing 
properties (in particular it can be uniquely “continued”).  
It can have singularities in the form of poles 
f(z) ~ (z - c)-1, (z - c)-2 , … 
or branch points:  
f(z) ~ (z - c)α if  α is not an integer. 



Σn=2 Im
n

!
!

!
S = 1 + iT = 1 + i�(4)

⇣X
pi �

X
pf

⌘
A

16

Unitarity. Recalling:

This (non-linear) equation basically determines 
the singularities of A(s,t) (more generally of 
Afi , 2nd hour)      

S†S = 1 ) �i(T � T †) = 2ImT = T †T
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Crossing symmetry 

p1

p2

p3

p4

!
The same analytic function describes, in different 

regions, 3 distinct processes: 
s-channel: 1+2->3+4   ; s > 0, t, u <0 

t-channel: 1+3*->2*+4  ; t > 0, s, u <0 
u-channel: 1+4*->3+2* ; u > 0, s, t < 0 

where a star denotes the antiparticle 

s = �(p1 + p2)2 = �(p3 + p4)2

t = �(p1 � p3)2 = �(p2 � p4)2

u = �(p1 � p4)2 = �(p2 � p3)2

s + t + u =
�

m2
i
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Mandelstam plane (equal masses)
s

tu

s + t + u = 4 m2
4 m2Regioni fisiche 

tratteggiate in verde
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A single particle appearing as intermediate state in a 
channel produces a pole in the corresponding 

Mandelstam variable at the (mass)2 of that particle. 
Unitarity forces the residue of the pole to “factorize”. 

Example of s-channel intermediate state: 

Poles in A  

p1

p2

p3

p4

p1

p2

p3

p4

~
MI

A(s, t) ⇠ � g12I gI34
s�M2

I + i✏

I

What about the iε?
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Α particle cannot be stable if its mass is above 
threshold of a channel it is coupled to.  
If so the pole is really off the real axis. Unitarity gives 
the value of ε (second hour). Breit-Wigner formula: 

Stable vs. unstable particles 

where ΓI is the inverse (in natural units) of the lifetime of 
the unstable particle (in agreement with the UP of QM) i.e. 

the decay rate:

A(s, t) ⇠ � g12I gI34
s�M2

I + iMI�I

�I =
X

f

�If ; �If /
Z

|gIf |2�(MI � Ef )
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Stable vs. unstable particles 

N.B. For small ΓI the integral of Im A (over s) is 
independent of  ΓI and we may take ΓI -> 0.  
This is the so-called narrow-resonance-approximation 
to be extensively used later. Careful use necessary.

Let us compute Im A:

ImA(s, t) = g12I
MI�I

(s�M2
I )

2 +M2
I �

2
I

gI34
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fine prima ora?
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Organizing the hadronic zoo 
A) Group theory:  

• SU(2)I, SU(3)F, same-J particles (e.g. p <-> n) 

B) Regge theory of complex J  
• For combining different-J particles (Regge) 
• For describing high-energy scattering (Chew-

Mandelstam) 
• Most important for the birth of string theory



A(E, �) =
��

J=0

AJ(E)PJ(cos�)

AJ(E) ⇥ ⇥(E)
J � �(E)
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Sketch of Regge’s theory of complex J!

Consider non-relativistic potential scattering. 
Expand the scattering amplitude in partial waves:

!

• In 1959 Tullio Regge had the bold idea of looking at 
AJ(E) as an analytic function of complex J. He 
found that, quite generically, there were poles in J 
at an energy-dependent position i.e. at J =α(E):



�(En) = n⇤ A(E, ⇤) =
⇥(En)

n� �(E)
Pn(cos⇤) ⇥ � ⇥(En)

��(E � En)
Pn(cos⇤)

J= α(E)

E

1

2

0

AJ(E) ⇥ ⇥(E)
J � �(E)

!
One “Regge trajectory” connects particles/

resonances  with different J => “nuclear democracy”.

i.e. just the contribution of a single resonance of energy En.

3

8

Assuming α(E) to go to a positive integer n at E = En.

E0 E1 E2



A(s, t) =
��

J=0

AJ(t)PJ(cos�t) ; cos�t = 1 + 2s/t

s = �(p1 + p2)2 = �(p3 + p4)2

t = �(p1 � p3)2 = �(p2 � p4)2

u = �(p1 � p4)2 = �(p2 � p3)2

s + t + u =
�

m2
i
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Chew-Mandelstam’s application of Regge 
theory in relativistic scattering

In s-channel region expand A(s,t) in t-channel 
partial waves:

At large s > 0  & fixed t < 0, the contribution of the Jth 
term grows like sJ . The series is badly divergent but, 
under some assumptions, can be extended analytically

p1

p2

p3

p4
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A(s, t) ⇤ ⇥(t)
sin(⇤�(t))

�
(�s)�(t) ± (�u)�(t)

⇥
⇤ ⇥(t)[ei⇥� ± 1]

sin(⇤�(t))
s�(t)

Note that Regge theory gives, in general a complex scattering 
amplitude while usual single particle exchanges do not. 

Interpreting correctly this imaginary part turned out to be 
crucial (next week?).

A very interesting experimental discovery of the sixties was 
the unexpected shape of the Regge trajectories:

Leaving the bloody details to the next hour here is the result:
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 αi(t) 

t

1
3/2

1/2
ρ

f

Ν

Δ
2

11/2

The exception: vacuum 
q.n. trajectory (Pomeron)

N**

Unlike in potential scattering they turned out 
to be amazingly linear and parallel

NB: which αi contribute to a given process depends 
on its t-channel quantum numbers (the channel 

whose Mandelstam variable is kept fixed )

dJ/dt ~ 0.9 GeV-2



A(s, t) ⇥ ⇥⇤(t)[ei⇥�� � 1]
sin(⇤�⇤(t))

s��(t) +
⇥A2(t)[ei⇥�A2 + 1]

sin(⇤�A2(t))
s�A2(t)
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Examples!

1. pion-nucleon charge exchange

π-

p n

π0
!

I=1 trajectories of 
both signatures can 

contribute

t-channel

!

Fitting data gives  αρ(0) ~ αA2(0) ~ 0.57 explaining quite 
well the scattering data above a few GeV. Distinctive 

prediction: shrinkage of forward peak



⌅T =
1
s
ImA(s, 0) ⇥ 1

s
Im

⇥P(0)[ei⇥�P + 1]
sin(⇤�P(0))

s�P(0) + · · · = ⇥P(0)s
�P(0)�1 + . . .
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!

2. proton-proton total cross section (LHC)

p p

!

I=0, 1 trajectories 
of both signatures 

can contribute 
Highest one has 
vacuum quantum 

numbers 
t-channel

p p

Im

!

Fitting data gives  αP(0) ~ 1.07 violating a famous 
(Froissart) bound (log2s): the story must be more 

complicated!
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1. Check of unitarity of BW formula. 
2. Experiments measure production cross sections 

(production rates) times branching ratios and neglect the 
weak decay of hadrons when computing such rates. Why? 

3. Pole in BW formula appears to be below the real axis. In 
reality it is below a cut in the complex s-plane (associated 
with the multi particle states into which the resonance 
decays) i.e. the pole lies on the 2nd Riemann sheet (there 
is also a sheet in which the pole is above the real axis, 
but the physical scattering amplitude is defined as A(s,t) 
evaluated on the real axis + i ε and that pole is far away 
and ineffective). 

Argomenti seconda ora
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!
5. Unitarity connects the discontinuity across the 
corresponding cut to a product of an amplitude A1 and a 
complex-conjugate amplitude A2* both involving the 
intermediate state and the particles defining the channel.

4. Real analyticity, branch points, cuts: a multi-particle state 
appearing as intermediate state in a channel produces a 
branch point in the corresponding Mandelstam variable at the 
minimal invariant mass of that system. 

!
6. Derivation of Regge behaviour.


