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Inflation and String Theory

There have been several attempts to incorporate standard 
(i.e. slow-roll) inflation in QST. It seems that slow-roll 

inflation is not a natural outcome of string theory.  
Why not ask instead: 

Which is the most natural cosmology suggested by QST? 
Let us start from the field equations that follow from the 

effective action of string theory at tree level (small gs) and 
small curvature (i.e. neglecting higher-derivative terms). 

In particular let us see whether the eqns. of string cosmology 
show new symmetries w.r.t. those of standard cosmology. 

But first a short parenthetic remark
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T-duality and the dilaton
There is a subtle point about T-duality. It can be appreciated 

by looking at the effective action:

When one dimension is compactified on a circle, the couplings 
in the remaining D-1 dimensions depend on a shifted dilaton:

As one may expect, T-duality has to be accompanied by a 
transformation of Φ such that the effective coupling in the 

non-compact dimensions remains the same. In general:
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If Vc is changed Φ has to transform to keep geff the same.
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If D ≠ 10 we have no chance to get a low-curvature solution 
and thus we shall limit ourselves to D =10:

We also limit ourselves to these massless fields representing a 
universal sector in all string theories.  

We allow the extra dimensions to be dynamical (unfrozen). 
We work in the “string frame” (fixed ls, varying GN, lP) but 

physical consequences are frame-independent.

Our starting point is (hereafter φ  = 2Φ)
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ȧi
ai

; ˙̄� ⌘ �̇�
X

i

Hi

¯� = �� 1

2

log(detGij)

¨

¯�� (

˙

¯�)2 = 0 ) d

dt
e��̄

= constant

5

Homogeneous (Bianchi I) equations
It is straightforward to write down the field equations for a 

homogeneous (for simplicity Bianchi I) universe:

They take the simple form:

where the so-called shifted dilaton 

satisfies, as a consequence,
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Scale-factor duality: 
a cosmological variant of T-duality?

There is an interesting symmetry of the string-cosmology 
equations under inversion of any individual scale factor ai(t), 
provided we keep the shifted dilaton invariant.  
Indeed, under ai(t) -> 1/ai(t),  Hi(t) -> - Hi(t), but our two 
independent equations go into themselves under this change. 
This symmetry, mapping solutions into new (and generically 
inequivalent) ones has been called scale-factor duality (SFD) and 
is closely connected to T-duality (although only the latter is a 
true symmetry of the theory). It also holds if we add string-
matter sources since those also transform nicely under SFD. 
(If the Bµν field is turned on, the discrete (Z29) SFD symmetry 
becomes a continuous O(9,9;R) symmetry).
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Generalized Kasner solutions
In the absence of other sources these equations can be easily 

solved. One finds:

These reduce to ta standard (Kasner) cosmology if we impose a 
constant dilaton. Note, however, that, unlike for Kasner, one can 

have a perfectly isotropic cosmology for a non-trivial dilaton:

and similarly for t < 0.  
Note the possibility of flipping arbitrarily the signs of each 

Kasner exponent if we adjust the dilaton.  
This is a consequence of SFD
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The pre-big bang scenario
The so-called pre big bang scenario is deeply rooted on SFD 
combined with the (more standard) invariance of the 
cosmological equations under T, the time reversal operation        
t -> -t (NB: Also T connects inequivalent solutions!). 

 SFDxT acts on an individual scale factor as follows:

Therefore, given a standard FLRW cosmology (an expanding & 
decelerating Universe at t > 0), SFDxT associates to it another 
expanding, but now accelerating, cosmology at t < 0. Can we put 
together these two SFDxT-related cosmologies? 
If the answer is yes we may have a new scenario in which a long 
“dual” phase at t < 0 preceded the standard FLRW phase 
possibly solving the shortcomings of the latter.
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Figure 1.1: Qualitative evolution of the curvature scale in the standard cosmological model,

in conventional inflationary models and in string-cosmology models.

and extended objects).

In the context of general relativity, however, the problem is how to avoid the curvature

singularity appearing at the end of the phase of growing curvature. This is in general impos-

sible, for both contraction and superinflationary expansion, unless one accepts rather drastic

modifications of the classical gravitational theory. In the contracting case, for instance, the

damping of the curvature and a smooth transition to the phase of decreasing curvature can

be arranged through the introduction of a non-minimal and gauge-non-invariant coupling of

gravity to a cosmic vector [504] or scalar [555, 56] field, with a (phenomenological) modifi-

cation of the equation of state in the Planckian curvature regime [540, 621], or with the use

of a non-metric, Weyl-integrable connection [503]. In the case of superinflation, a smooth

transition can be arranged through a breaking of the local Lorentz symmetry of general

relativity [266, 281], a geometric contribution of the spin of the fermionic sources [267], or

the embedding of the space-time geometry into a more fundamental quantum phase-space

dynamics [136, 269]. In the more exotic context of topological transitions, a smooth evolu-

tion from contraction to expansion, through a state of minimal size, is also obtained with

the adiabatic compression and the dimensional transmutation of the de Sitter vacuum [316].

In the context of string theory, on the contrary, the growth of the curvature is naturally

associated to the growth of the dilaton and of the coupling constants (see for instance

Section 2). This effect, on the one hand, sustains the phase of superinflationary expansion,

with no need of matter sources or extra dimensions. On the other hand, it necessarily leads

the Universe to a regime in which not only the curvature but also the couplings become

strong, so that typical “stringy” effects become important and are expected to smooth out

the curvature singularity. This means that there is no need to look for more or less ad hoc

modifications of the theory, as string theory itself is expected to provide the appropriate

tools for a complete and self-consistent cosmological scenario.
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Diagrams illustrating PBB idea
 (GV '91, Gasperini & GV '93)
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The pre-big bang accelerator
It looks as if we have obtained inflation for free in string 
theory! How is that possible with just a scalar field with 

vanishing potential?  
The answer to this question lies in the peculiar way the dilaton 

appears in string theory. Recall that the exponential of the 
dilaton controls gs and the ratio lP/ls.  

Consider a post-big bang solution describing a decelerating 
expansion with a constant dilaton. Under SFDxT this solution 
goes into one describing a pre-big bang accelerated expamsion 

with a growing dilaton, hence a growing gs and lP/ls.  
Roughly, in the Friedman eqns. the acceleration is driven by a 

growing dilaton/G (DDI). 
!
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The accelerated expansion is present in the string frame, i.e. if 
we measure distances in ls-units. But the growth of lP/ls  is so 

fast that the universe contracts if, instead, we measure 
distances in lP-units.  

Thus the answer to the question:  

Is PBB a bouncing cosmology? 
depends on the frame, i.e. on the meter we use to measure 

distances. The scale-factor may or may not bounce. 
However, independently of the frame, PBB cosmology 

corresponds to a “curvature bounce” in that has a phase of 
growing curvature turning into one of decreasing curvature 

through an intermediate “string phase” during which the 
curvature is of order ls-2. 

In any case the physical predictions are identical in the two 
frames.



Initial conditions & fine-tuning 

12

So far we have assumed a “cosmological principle” for string 
cosmology, like it’s done for the HBB cosmology. 

We would like instead PBB cosmology to emerge from generic 
(i.e. non fine tuned) initial conditions.  

This is possible if we make an assumption of 
 “Asymptotic Past Triviality”. 

This is just the opposite of what is assumed in HBB cosmology 
(where everything started at a singularity and it’s very 

difficult to define initial conditions).  



  Asymptotic Past Triviality (APT)  

APT: As we go towards t = -∞ the Universe gets closer and 
closer to the trivial vacuum of superstring theory (nearly flat 
D=10 spacetime and nearly vanishing string coupling, eφ << 1) 

but is otherwise generic (in a technical sense).  
Thanks to APT we can thus use the effective action of QST at 
lowest order both in the genus and in the derivative expansion:
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We can write down a generic solution in the far past and check 
that it contains the appropriate number of arbitrary functions 

to be called generic. It describes, physically, a chaotic 
superposition of gravitational and dilatonic waves.  

In the APT regime the field equations are invariant under a 
constant shift of φ and under a global rescaling of x. As a 

result, the generic initial data include, as free parameters, the 
initial value of the dilaton φin and the initial curvature scale. 
Solutions that go to the trivial vacuum in the infinite past, 
become increasingly complicated, curved and coupled as one 

moves forward in time. 
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Figure 3.1: Penrose diagram for a possible model of complete string-cosmology scenario.

Of particular interest here are the so-called News functions, simply given by

N(v, θ,ϕ) ≡ ∂v f(v, θ,ϕ), N+ ≡ ∂v f+, N× ≡ ∂v f×, (3.12)

and the “Bondi mass” given by:
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The Bondi mass and the News are connected by the energy–momentum conservation equa-

tion, which tells us that the advanced-time derivative of M−(v) is positive-semidefinite, and

related to incoming energy fluxes controlled by the News:
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=

1
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)
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The physical meaning of M−(v) is that it represents the energy brought into the system

(by massless sources) by advanced time v. In the same spirit, one can define the Bondi

mass M+(u) at future null infinity I+. It represents the energy still present in the system

at retarded time u. If only massless sources are present, the so-called ADM mass is given

by

M−(+∞) = M+(−∞) = MADM , (3.15)

while M−(−∞) = 0, and M+(+∞) = MC represents the mass that has not been radiated

away even after waiting an infinite time, i.e. the mass that underwent gravitational collapse

[164]. Collapse (resp. no-collapse) criteria thus aim at establishing under which initial

conditions one expects to find MC > 0 (resp. MC = 0).
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Carter-Penrose diagram



As a consequence of singularity theorems (Hawking, Penrose), 
the evolution generically brings about the formation of black 

holes in different spacetime locations with arbitrary (and 
randomly distributed?) values for φh and for the horizon 

radius Rh.  
A PBB cosmology/collapse then takes place inside the horizon.
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Figure 3.2: Qualitative space-time illustration of the possible birth of pre-big bang Universes

from a chaotic sea of gravidilaton waves. Each baby Universe is simultaneously represented

in the S-frame (like an expanding cone) and in the E-frame (like a shrinking hole), and it

is followed for an increasing time interval as we move upward in the figure.

finds that, in d = 3, regions initially larger than 1019λs (namely, larger than 10−13 cm if

λs ∼ λP ∼ 10−32 cm) can generate Universes like ours, while smaller ones cannot.

A basic difference between the large numbers needed in (non-inflationary) FRW cosmol-

ogy and the large numbers needed in pre-big bang cosmology, should be stressed. In the

former, the ratio of two classical scales, e.g. of total curvature to its spatial component,

which is expected to be O(1), has to be taken as large as 1060. In the latter, the above

ratio is initially O(1) in the collapsing/inflating region, and ends up being very large in

that same region, thanks to the inflation. However, the (common) order of magnitude of

these two classical quantities is a free parameter, and it is taken to be much larger than the

classically irrelevant quantum scale. Indeed, the smallness of quantum corrections (which

would introduce a scale in the problem) was explicitly checked in [343].

An example of what we have just said is the case of the collision of two finite-front

plane waves. It is clear from Eq. (3.48) that all that matters is the ratio of two geometrical

classical quantities, the transverse size L and the focal distance (Gρ)−1. Neither the Planck

nor the string lengths appear in the collapse criterion. Even the appearance of the Newton

constant in (3.48) is somewhat misleading: as always in the context of classical general

relativity, the Newton constant can be removed by a convenient choice of units of energy,

and then everything reduces to geometrical quantities.

We can visualize analogies and differences between standard and pre-big bang inflation

68
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Implementing the curvature bounce
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The existence of inflationary solutions at t < 0 is not of much 
use unless we can connect this phase to a standard FLRW 

phase at t > 0. 
This is the most difficult theoretical issue facing the PBB 

scenario. 
As one approaches the singularity both the curvature and the 
string coupling diverge. Hence describing the bounce amounts 
to solving string theory when the curvature approaches the 

string scale and/or the string coupling becomes O(1). 
!
!
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Strong coupling and strong curvature regimes are sometimes 
tractable provided the background preserves (at least part 
of the) supersymmetry. 
Unfortunately, a time-dependent background is not 
supersymmetric and this makes the task very hard. 
One of the very few known results concern the search for 
late-time de-Sitter-like (constant curvature) attractors 
accompanied by linear (in t) dilaton in the presence of higher 
derivative corrections to the tree-level effective action. 
The existence of such attractors depends on the existence 
of real solutions to an algebraic system of n-equations in n-
unknowns: generically there is a finite number of solutions. 
Examples involving up to 4-derivative terms have been given, 
but this does not prove much because even higher order 
corrections cannot be neglected. 

!
!
!
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If this is what really happens: 
a “string phase” would follow during which the curvature is 

constant (and of order ls-2) while the coupling keeps growing 
until higher-genus corrections become important. 

It is conceivable (but not yet proven) that these loop 
corrections complete the transition to a FLRW phase. 

Loops are related to particle production. This can warm up 
the Universe and account for its “initial” entropy. 

Entering the strong coupling region, the dilaton can develop a 
non-perturbative potential (as a result of SUSY breaking) 
and eventually get stuck in its minimum. Thereafter the 

dilaton would have been constant and massive thus avoiding 
contradiction with precision tests of GR and with the 

observed time independence of various constants of Nature. 
!
!
!



21

V( )

present ?initial 

weak coupling strong coupling

Figure 2.1: According to the pre-big bang scenario, the dilaton starts in the asymptotic past

of our Universe at very large negative values, and grows through a flat potential towards

the strong-coupling regime. At present, it is either trapped at a minimum of the potential,

or keeps growing monotonically towards +∞ (see Section 10).

extended also to a more general brane–gas context, see Subsection 8.5).

This as well as the other, early attempts were based on Einstein’s cosmological equations,

i.e. on gravitational equations at fixed dilaton. Taking into account the large-distance

modifications of general relativity required by string theory, and including a dynamical

dilaton, the target-space duality typical of closed strings moving in compact spaces can be

extended (in a somewhat modified version) even to non-compact cosmological backgrounds

[599, 478, 580, 581, 582]. Consider in fact a generic solution of the field equations of string

theory (hence a point in our moduli space), which possesses a certain number n of Abelian

isometries (the generalization to non-Abelian isometries is subtle, see [206]). Working in an

adapted coordinate system, in which the fields appearing in the solution are independent

of n-coordinates, it can then be argued [477] that there is an O(n, n;R) group that, acting

on the solution, generates new ones (in other words, this group has a representation in that

part of moduli space that possesses the said isometries).

Note that, unlike strict T -duality, this continuous O(d, d;R) extension is not a true

symmetry of the theory, but only a symmetry of the classical field equations. The corre-

sponding transformations can be used to generate, from a given solution, other, generally

inequivalent ones, and this is possible even in the absence of compactification. In the next

subsections we will show in detail that such transformations, applied to a decelerated cos-

mological solution (and combined with a time-reversal transformation) lead in general to

inflation, and we shall present various (low-energy) exact inflationary solutions, with and

without sources, which may represent possible models of pre-big bang evolution. We shall

consider, in particular, both scale-factor [599, 580, 582] and O(d, d) [477, 478, 560, 367, 318]

duality tranformations, and we will discuss some peculiar kinematic aspects of such pre-big

22
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Actually, in order to avoid these phenomenological problems, 
one has to “stabilize” also the shapes and sizes of the 6 
extra dimensions of space (moduli stabilization problem) 
since otherwise they induce other long range forces and 

possible variations in the constants of Nature. 
We shall see that, in order to generate an interesting 

spectrum of cosmological perturbations it is important to let 
the 6 extra dimensions contract while the other 3 expand. 

It is then conceivable that, at the bounce or soon after, the 
extra dimensions stabilize at the self-dual size (leading 

incidentally to the emergence of large gauge symmetries). 
Only in this case the post bang (bounce) phase will be of the 

conventional FLRW type.  
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Assuming the whole idea makes sense physically and 
mathematically, can we put this new cosmology to an 

experimental/observational test? 
This is what we will discuss next week making use of how 

conventional and string cosmology generate the large scale 
structure of the Universe from Quantum Mechanics.  


