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Stringhe in un fondo non banale  
Azione efficace nello spazio-tempo 
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Strings in non-trivial backgrounds 
We have already seen how to generalize the Polyakov action to 
a non-trivial space-time background metric Gµν(x).  

and also to a 2-form Bμν=-Bνμ 
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with εαβ the Levi-Civita symbol in D=2. 
Classically, the local D=2 symmetries are present for any Gµν 
and Bμν. 
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Can we write anything else that satisfies, classically, the 2D 
local symmetries, and in particular Weyl invariance?  
The only possibility appears to be:

but only if the field Φ(x), called the dilaton, is a constant.  
In that case, αs already discussed, the integral has a 
topological meaning: 

It is related to the genus g of the Riemann surface described 
by the metric γαβ. Thus, if Φ is constant, SΦ = 2Φ(1-g); if it 
isn’t, SΦ is non-trivial and classically not Weyl-invariant.
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Under what conditions for the background fields can we 
satisfy the conditions of 2D-rep. and Weyl invariance at the 
quantum level? 
This is, in general, a highly non trivial problem. We know one 
solution: Minkowski spacetime, vanishing B, and constant Φ, 
provided D takes a critical value (D=26, 10).

N.B. In the quantum action S/h, only the combinations Gµν/ls2 

and Bµν/ls2 (with dimensions length-2) appear. This will provide 
useful checks below.  

Now the Big Q:

We have to preserve the local WS symmetries at the 
quantum level. Maybe, for once, QM can help? 
Let’s then put all 3 terms together. The action for a string 
in a metric, antisymmetric and dilaton background becomes:
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This is the string we have been discussing so far with just 
one small additional point. 
When the above action is inserted in Feynman’s path integral 
it will weight the contribution of a Riemann surface of genus 
g by a factor exp(-2Φ(1-g)) hence by a factor exp(2Φ) for 
each extra string loop. Therefore, exp(2Φ) plays, in QST, 
the same role that α plays in QED (or in the SM):  it is the 
(dimensionless) loop-counting parameter. 
In order to look for more general solutions we have to resort 
to some kind of perturbation theory around the “trivial” 
backgrounds. The best (only?) known of these expansions is 
the one valid for slowly varying fields, the so-called α’ 
expansion whose expansion parameter is:

l2s @2 ⇠ l2s Gµ⌫@µ@⌫ ⇠ Ĝµ⌫@µ@⌫
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A non trivial calculation (->2nd hour) leads to the following 
equations to leading non-trivial order in α’ (ls2):

We can now reinterpret the meaning of D = Dc.  
If D ≠ Dc, there is no solution to the above equations with 
nearly constant backgrounds. All solutions must necessarily 
involve fields whose space-time variations are so large to 
compensate for the extra factor ls2. 
 However, in that case, we cannot neglect higher-order 
corrections (e.g. O(ls4)) and be sure that we do have a 
solution. There is fortunately an exception.
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Take a Minkowskian background with D ≠ Dc, B=0, and             
Φ = QµXµ where Qµ is a constant (space or time like) vector. 
 At the order we are computing we find that all the β-
functions are zero provided we take:

!

The linear-dilaton solution 

This shows how a classically non-Weyl-invariant term in 
the action can be used to give back Weyl-invariance at the 
quantum level!  
In fact this solution turns out to be exact (at g=0 level) 
since a linear dilaton keeps the action quadratic. 
Necessarily, however, the effective coupling of string 
theory grows large (either at space- or at time-like 
infinity) and one has to worry about loop corrections.
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The effective action of QST
A very interesting property of our (β-function) equations is 
that they are (functional)derivatives of a function(al). 
That means that they correspond to the e.o.m. that follow 
from an “effective” action Γeff 
Up to the order we have considered we find Γeff to be:

1. For the dots, see below. 
2. The dilaton appears with the “wrong” sign, but there is 
nothing wrong with this (-> 2nd hour). 
3. (Dc-D) plays the role of a cosmological constant
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Other interesting properties of Γeff 

1. The dilaton appears through an overall factor multiplying 
something that can only depend on its derivatives. This is 
as expected since, if Φ  is constant, the only dependence on 
Φ must be through an overall factor exp(-2Φ(1-g)). 

2. Γeff contains no arbitrary dimensionless parameters and 
just a single dimensionful one, ls. Actually, even ls can be 
eliminated if one uses, instead of G, B, Φ, the rescaled 
fields ls-2 G, ls-2 B, Φ. Again, this is as expected. 

3. Γeff is general covariant. It is also invariant under            
B--> B+ dΛ. B only enters through its field strength H = dB. 
We’ll come back next week to the stringy symmetries of 
Γeff. 
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The two meanings of Γeff

The effective action has two distinct meanings. The first is 
the one we have just said: it generates (as its own e.o.m.) the 
conditions to be satisfied by the background fields in order 
to preserve the 2D local symmetries of string theory at the 
quantum level. 
The second meaning is a more familiar one for an effective 
action: Γeff  can be used to compute classical solutions, 
ground states, the couplings of various massless particles 
and their scattering amplitudes as an expansion in powers of 
energy. 
It is fascinating that these two (apparently unrelated) 
concepts get interconnected in string theory. How come? 

(-> 2nd hour for a hint)
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A theory of gravity but not Einstein’s!
In D dimensions, the analogue of the Einstein-Hilbert action 
(w/ a cosmological constant) takes the form:

while in QST we found:

Besides H, are they equivalent up to some field redefinition? 
The answer is obviously no: even if we set H=0, QST gives a 
scalar-tensor theory of a Jordan-Brans-Dicke kind!
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A massless dilaton induces long-range interactions that, in 
general, violate the equivalence principle: the dilaton, having 
spin zero, couples (non universally!) to mass rather than to 
energy and produces violations of UFF. Αn m > 10-4 eV 
needed to be safe. 
This is a real threat to QST, making it vulnerable even to 
long-distance/low-energy experiments.  
In fact, at tree-level, string theory is already completely 
ruled out by present precision tests of the EP  
(cf. JBD theory with a small ω). 
Hopefully cured by loop and/or non-perturbative corrections 
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while in QST we find:

For a constant Φ we can identify: 

Λ = 0,  l108 = exp(2Φ)ls8, αD = exp(2Φ)ls6 => l108 = αD ls2, 
The latter eq. unifies gravity and gauge interactions! 

What happens if we now compactify the extra dimensions? 
(-> 2nd hour)
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Unification of gravity and gauge interactions
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The two expansions of Γeff
We have (roughly) seen how quantization of the string 
produces potential 2D anomalies that have a natural 
expansion in powers of ls. 
We have also seen that integrating over the 2D metric 
produces another expansion, in powers of exp(2Φ). 
Therefore Γeff has a double perturbative expansion:

The expansion in powers of exp(2Φ) has a QFT analogue. The 
one in powers of ls does not since the point-particle limit 
corresponds to ls =0. The short-distance modifications due 
to ls ≠ 0 remove the UV infinities of the QFT-like expansion! 
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These latter modifications make loop corrections well 
defined in the UV. Indeed, one gets their correct order of 
magnitude, exp(2Φ), by computing loops as in a QFT but with 
a short distance cutoff given by the string length.  
Here is a prototypical quantum-gravity loop correction:

which is of the same order as a gauge-loop correction. 
Unification of gravitational and gauge interactions at E~Ms 
survives loop corrections… 
But, as we move towards the IR, loops behave differently, 
as in QFT…


