Bollettino Settimanale

Lunedì 22 aprile 2024	Martedì 23 aprile 2024	Mercoledì 24 aprile 2024	Giovedì 25 aprile 2024	Venerdì 26 aprile 2024
AULA CONVERSI ore 14.30 SEMINARIO INFN				
SEMINARIO INFIN				
An eikonal approach to gravitational				
scattering and waveforms.				
Carlo Heissenberg (Queen Mary University of London)				
The classical limit of scattering amplitudes offers a convenient strategy to calculate gravitational-wave				
observables for binary processes in the post- Minkowskian (PM) regime, in which the two objects are				
far apart and interact weakly. In this talk, I will discuss how the eikonal exponentiation offers a simple and				
conceptually transparent framework to exploit this connection and calculate key gravitational observables				
from amplitudes: the deflection angle for hyperbolic encounters, energy and angular momentum losses, as				
well as the emitted gravitational waveform itself. The latter emerges in particular from the 2-to-3 amplitude for				
the scattering of two massive scalars and the emission of a graviton. I will briefly illustrate the calculation of its				
one-loop contribution, which is the key ingredient to calculate the first PM correction to the classic result				
obtained by Kovacs and Thorne in the 70s. Moreover, I will show how the choice of asymptotic (BMS) frame is				
crucial in order to compare the resulting amplitude-based waveform with predictions from soft theorems and from				
the post-Newtonian (PN) formalism, in the soft and small-velocity limits, finding agreement up to 3PN order.				
gg.coment up to en it orden				