Bollettino Settimanale

Lunedì 5 febbraio 2024	Martedì 6 febbraio 2024	Mercoledì 7 febbraio 2024	Giovedì 8 febbraio 2024	
AULA CARERI ore 14.30 SEMINARIO INFN	AULA CONVERSI ore 12.30 SEMINARIO			S, S
New results from the Muon g-2 experiment at Fermilab	Generative AI and Diffusion Models: Statistical Physics Analysis and Diffusion Models.			R
Marco Incagli (Istituto Nazionale di Fisica Nucleare)				J
(-2)/2 is one of the most precisely measured and	Generative diffusion is the state-of-the-art method for generating images and sound. Diffusion Models learn			Gl gla pr
predicted quantities in the Standard Model of	how to time-reversed the stochastic process that			R
measurements and improved theoretical	transforms data, e.g. images, in white noise. Generative diffusion then consists in integrating a Langevin equation,			Г К
understanding led the way from the first	with suitable (learned) forces, that transforms white noise in new data. We show that the optimally trained diffusion			re I
best measured value of the magnetic anomaly	process involves three dynamical regimes: a first one of			S
Muon g-2 experiment at Fermilab aims to	almost pure Brownian motion; a second one where the system identifies the main classes of the data; finally, a			te th
measure a_mu with a final accuracy close to 100	last regime where the diffusion 'collapses' onto one of the examples of the database. To avoid this collapse one			h
dataset was published in 2021 confirming, with a	needs either non-optimal diffusion or exponentially large			th
similar sensitivity, the discrepancy of almost 4	database. We provide expressions for the two typical times separating these regimes, applicable to any			
Brookhaven National Laboratory from the theory	database, and confirm their validity using simulations and			
progress on the theory side has not yet been	mathematically solvable models. Interestingly, the cross- over between these regimes become bona-fide			
summarized into an official consensual update of	dynamical phase transitions in the limit of large dimension of the data and large number of samples. The 'collapse'			
the 2019 and 2020 datasets, which contain a	transition which is attracting a lot of attention for			
sensitivity regime of g-2. I will discuss the	applications turns out to be a glass transition towards an			
improvement in the accuracy of a_mu and the				
future prospects for the experiment. I will then discuss the implications of the comparison of the				
new measurement with the last Standard Model predictions for muon g-2.				
prodotono for maon g 2.				

Venerdì 9 febbraio 2024

SALA LAUREE ore 14.30 SEMINARIO DI FISICA STATISTICA

Reparametrization Invariance, from glasses to toy black holes.

Jorge Kurchan (ENS Paris)

Glassy dynamics have time-reparametrization `softness': glasses fluctuate, and respond to external perturbations, primarily by changing the pace of their evolution. Remarkably, the same situation also appears in toy models of quantum field theory such as the Sachdev-Ye-Kitaev (SYK) model, where the excitations associated to reparametrizations play the role of an emerging `gravity'. I will describe how these two seemingly unrelated systems share common features, arising from a technically very similar origin. Apart from the curiosity that this correspondence naturally arouses, there is also the hope that developments in each field may be useful for the other.