

Giornata di presentazionealle matricole, 22/9/2023

Thanks to: Marta De Luca, Bernard van Heck, Paolo Postorino

Responsible for the Curriculum

Prof. Paolo Postorino

- E-mail: paolo.postorino@roma1.infn.it & paolo.postorino@uniroma1.it
- @ Fermi building
- Office room 401 & Lab HPS room 418 (IV floor)
- Lab LTS room 115 (I floor)

٠ ٠

Condensed Matter Physics @Sapienza

- **Condensed Matter (CM) Physics group:** more than <u>50 scientists</u> (researchers, associate and full profs.), several affiliated researchers (mostly CNR) and tens of Ph.D. students and Post. Docs.
- *Main Research Areas:* hard matter, nanostructures, soft and bio matter, photonics and quantum technologies.

https://www.phys.uniroma1.it/fisica/ricerca/areetematiche-e-gruppi-di-ricerca

Condensed Matter Curriculum

Why should I choose it?

- International Atmosphere: The curriculum is in English, Many international Collaborations, Erasmus Mundus Quarmen.
- **Challenging Problems:** Fast Progress, Small Research Groups/Teams (Experiments are Cheap)
- Applied and Fundamental Research.
- Many Career Opportunities in Italy and Abroad in Research and Development (semiconductor electronics, automotive, microelectronics), Data Science, Quantitative Science.

Piano Nazionale di Ripresa e Resilienza #Nextgenerationitalia

What is condensed matter physics?

It deals with macroscopic and microscopic physical properties of matter, primarily solids and liquids.

- Necessity to understand systems of many interacting particles or components.
- Realization that "more is different": new properties emerge that are not attributes of individual constituents, leading to a huge variety of phenomena and applications.

NOBEL PRIZES IN THE LAST 15 YEARS

2022, "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science", Alain Aspect, John F. Clauser and Anton Zeilinger

2018, "For groundbreaking inventions in the field of laser physics", A. Ashkin, G. Mourou, D. Strickland

2016 *"For theoretical discoveries of topological phase transitions and topological phases of matter"*, D. J. Thouless, F.M.D. Haldane, J.M. Kosterlitz

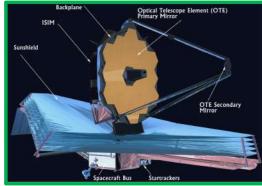
2014 *"For the invention of efficient blue light-emitting diodes* which has enabled bright and energy-saving white light sources", I. Akasaki, H. Amano and S. Nakamura

2012 *"For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"*, S. Haroche and D. J. Wineland

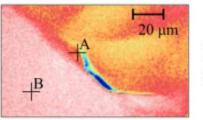
2010 *"For groundbreaking experiments regarding the two-dimensional material graphene"*, A. Geim, K. Novoselov

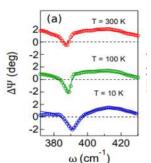
2009 *"For the invention of an imaging semiconductor circuit – the CCD sensor"*, W.S. Boyle and G.E. Smith

Why is it important?

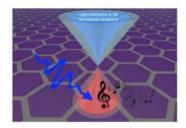

Condensed matter is **the largest subfield of physics** (~1/3 physicists are in Condensed Matter): *why?*

- It is all around us. We spend most of our day interacting with "condensed matter". It gives the answers to simple questions, *e.g.*: why do we like coffee in ceramic cups? Why is a piece of gold shiny?
- It provides the ideal laboratory to study, apply and develop quantum mechanics and statistical physics

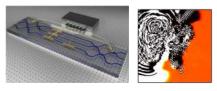


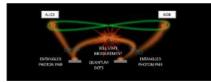

...which are in turn enabling new discoveries in other fields

Experimental Condensed Matter (Sapienza)

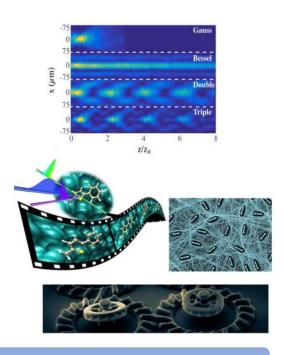

HARD CONDENSED MATTER

Superconductivity, strongly-correlated systems, and topological states [Saini, Nucara, Ortolani, Del Re, Conti, Postorino]

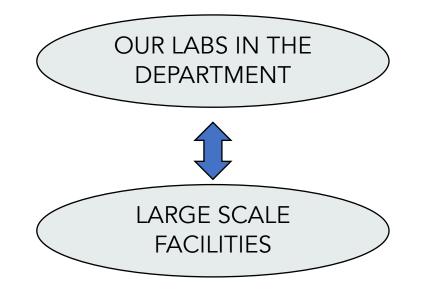

Surface Physics, Nanostructures [Baldassarre, Ortolani, Nucara, Lupi, Betti, Mariani, Frisenda, Postorino, Felici, Polimeni, De Luca M., Trotta, Placidi, Scopigno, Trequattrini]



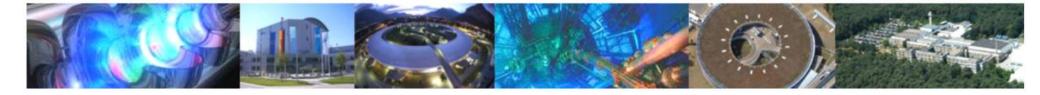
PHOTONICS & QUANTUM TECHNOLOGIES


[Sciarrino, Spagnolo, Mataloni, Conti, Del Re, Trotta]

ACTIVE MATTER, SOFT MATTER & BIOPOLYMERS


[Postorino, Baldassarre, Ortolani, Ruocco, Conti, Del Re, Di Leonardo, Scopigno, Sarti, Bordi, Bove, Trequattrini]

Adapted from B. Van Heck, M. de Luca


Experimental Condensed Matter (Sapienza)

Electrons, neutrons, ions and photons are the main probes in condensed matter experiments

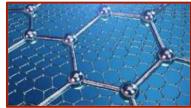
- Synchrotron sources
- Free electron lasers

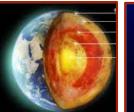
- Neutron sources
- European magnetic field laboratories
- Micro/nano fabrication labs

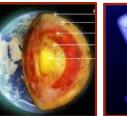
Theoretical Condensed Matter (Sapienza)

QUANTUM MATTER

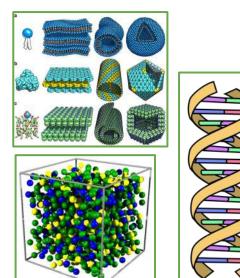
[Lara Benfatto, Lilia Boeri, Sergio Caprara, Marco Grilli, Francesco Mauri, Riccardo Mazzarello, Bernard van Heck]


SOFT MATTER


[Andrea Crisanti, Cristiano De Michele, Lorenzo Rovigatti, John Russo, Francesco Sciortino]

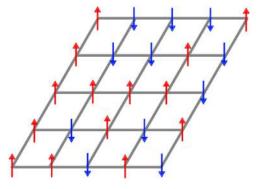

COMPLEXITY

[Vittorio Loreto, Francesca Tria]



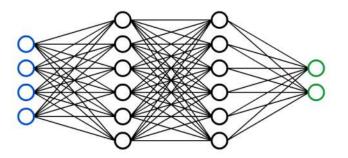
- Superconductivity
- **Magnetism**
- **2D Materials**
- Matter @ Extreme conditions
- **Topological Matter**
- **Quantum Devices**

- **Complex liquids**
- Self-assembly
- **Biopolymers**
- **Phase-Change Materials**
- **Active Matter**


- **Networks**
- Human Dynamics
- **Innovation dynamics**
- Sustainable Cities

Theoretical Condensed Matter (Sapienza)

Research in theoretical condensed matter theory requires to learn, use and develop advanced methods in theoretical physics, both analytical and numerical.


Many-Body Theory

Statistical Mechanics

Computer Simulations (Quantum & Classical)

Machine Learning & Al

Taken from B. Van Heck, M. de Luca

Curriculum

Standard:

Mandatory (6) and eligible courses (6) chosen within the groups: A(1), B(2), C(1), free choice (2)

5 recommended curricula:

- Complexity Science
- Disordered systems: liquid, glassy and soft matter
- Photonics and Quantum Technologies
- Superconductivity, Strongly Correlated Systems, and Functional
 - Materials
- Surface Physics and Nanostructures

Customized:

Mandatory courses are always mandatory but eligible courses can be chosen more freely. The individual plan <u>must</u> be motivated and possibly discussed with the responsible of the curriculum.

Talk to P. Postorino

Information and syllabus for courses: <u>https://corsidilaurea.uniroma1.it/it/corso/2021/30055/cds</u>

	Corso di laurea in Fisica (LM-17) - Curriculum Condensed matter physics: Theory and experiment									
N.	Insegnamenti	CFU	anno	sem.	SSD	eng	ambito			
1	Introduction to Quantum Field Theory	6	1	1	FIS/02	Y	caratt.			
2	Condensed Matter Physics	6	1	1	FIS/03	Y	caratt.			
3	Physics Laboratory I (propedeutico a * Physics Laboratory II)	6	1	1	FIS/01	Y	caratt.			
4	Physics Laboratory II *	9	1	2	FIS/01	Y	caratt.			
5	Condensed Matter Physics II	6	1	2	FIS/03	Y	caratt.			
6	Computing Methods for Physics *	6	1	1	INF/01	Y	affint.			
7	English Language	4	1	2		Y	AAF			
8	Elective (within group A)	6	1/2	1/2		Y	affint.			
9	Elective (within group B)	6	1/2	1/2	FIS/03	Y	caratt.			
10	Elective (within group B)	6	1/2	1/2	FIS/03	Y	caratt.			
11	Elective (within group C)	6	1/2	1/2		Y	affint.			
12	Elective (free choice)	6	1/2	1/2	j –		S - 111.			
13	Elective (free choice)	6	1/2	1/2						
14	Internship	3	2	1	5	Y	AAF			
15	Thesis Project	38	2	2		Y	AAF			

Introduction to Quantum Field Theory \equiv Relativistic Quantum Mechanics

* internal multiple choice

	Curriculum Condensed matter physics: Theory and experiment										
N.	Insegnamenti	CFU	anno	sem.	SSD	eng	ambito				
1	Introduction to Quantum Field Theory	6	1	1	FIS/02	Y	caratt.				
2	Condensed Matter Physics	6	1	1	FIS/03	Y	caratt.				
3	Physics Laboratory I (propedeutico a Physics Laboratory II)	6	1	1	FIS/01	Y	caratt.				
4	Physics Laboratory II	9	1	2	FIS/01	Y	caratt.				
5	Condensed Matter Physics II	6	1	2	FIS/03	Y	caratt.				
6	Computing Methods for Physics	6	1	1	INF/01	Y	affint				
7	English Language	4	1	2		Y	AAF				
8	Elective (within group A)	6	1/2	1/2	· · · ·	Y	affint				
9	Elective (within group B)	6	1/2	1/2	FIS/03	Y	caratt.				
10	Elective (within group B)	6	1/2	1/2	FIS/03	Y	caratt.				
11	Elective (within group C)	6	1/2	1/2		Y	affint				
12	Elective (free choice)	6	1/2	1/2							
13	Elective (free choice)	6	1/2	1/2			9.				
14	Internship	3	2	1		Y	AAF				
15	Thesis Project	38	2	2		Y	AAF				

	Curriculum Condensed matter physics: Theory and experiment									
N.	Insegnamenti	CFU	anno	sem.	SSD	eng	ambito			
1	Introduction to Quantum Field Theory	6	1	1	FIS/02	Y	caratt.			
2	Condensed Matter Physics	6	1	1	FIS/03	Y	caratt.			
3	Physics Laboratory I (propedeutico a Physics Laboratory II)	6	1	1	FIS/01	Y	caratt.			
4	Physics Laboratory II	9	1	2	FIS/01	Y	caratt.			
5	Condensed Matter Physics II	6	1	2	FIS/03	Y	caratt.			
6	Computing Methods for Physics	6	1	1	INF/01	Y	affint			
7	English Language	4	1	2		Y	AAF			
8	Elective (within group A)	6	1/2	1/2	· · · · ·	Y	affint			
9	Elective (within group B)	6	1/2	1/2	FIS/03	Y	caratt.			
10	Elective (within group B)	6	1/2	1/2	FIS/03	Y	caratt.			
11	Elective (within group C)	6	1/2	1/2		Y	affint			
12	Elective (free choice)	6	1/2	1/2						
13	Elective (free choice)	6	1/2	1/2			0.			
14	Internship	3	2	1		Y	AAF			
15	Thesis Project	38	2	2		Y	AAF			

Gru	Gruppo A (aff.– int.)									
1	Statistical Mechanics and Critical Phenomena	6	1	1	FIS/02	Y				
2	Physics of liquids	6	1	2	FIS/03	Y				
3	Physics of solids	6	2	1	FIS/03	Y				

Gru	Gruppo A (aff.– int.)								
1	Statistical Mechanics and Critical Phenomena	6	1	1	FIS/02	Y			
2	Physics of liquids	6	1	2	FIS/03	Y			
3	Physics of solids	6	2	1	FIS/03	Y			

Jru	ppo B (caratt.)						
1	Soft and Biological Matter	6	1	1	FIS/03	Υ	
2	Nonlinear and Quantum Optics	6	1	1	FIS/03	Y	
3	Photonics	6	1	2	FIS/03	Y	
4	Physics of liquids	6	1	2	FIS/03	Y	
5	Spectroscopy Methods and Nanophotonics	6	1	2	FIS/03	Y	
6	Superconductivity and Superfluidity	6	1	2	FIS/03	Y	
7	Many Body Physics	6	2	1	FIS/03	Y	
8	Physics of solids	6	2	1	FIS/03	Y	
9	Physics of Complex Systems	6	2	1	FIS/03	Y	
10	Surface Physics and Nanostructures	6	2	1	FIS/03	Y	

L	Computational Biophysics	6	1	1	INF/01	Y
1	Nonlinear and Quantum Optics	6	1	1	FIS/03	Y
}	Soft and Biological Matter	6	1	1	FIS/03	Y
l	Statistical Mechanics and Critical Phenomena	6	1	1	FIS/02	Y
5	Biophysics	6	1	2	FIS/03	Y
5	Computer architecture for Physics	6	1	2	INF/01	Y
7	Advanced Machine Learning for Physics	6	1	2	INF/01	Y
3	Mathematical Physics	6	1	2	MAT/0 7	Y
)	Neural Networks	6	1	2	FIS/02	Y
0	Nonlinear waves and solitons	6	1	2	FIS/02	Y
1	Photonics	6	1	2	FIS/03	Y
2	Physics of liquids	6	1	2	FIS/03	Y
3	Spectroscopy Methods and Nanophotonics	6	1	2	FIS/03	Y
4	Superconductivity and Superfluidity	6	1	2	FIS/03	Y
5	Theoretical Biophysics	6	1	2	FIS/02	Y
6	Molecular Biology	6	1	2	BIO/11	Y
7	Quantum Field Theory	6	2	1	FIS/02	Y
8	Physics of Solids	6	2	1	FIS/03	Y
9	Medical Applications of Physics	6	2	1	FIS/01	Y
0	Many-Body Physics	6	2	1	FIS/03	Y
1	Physics of Complex Systems	6	2	1	FIS/03	Y
2	Quantum Information and Computation	6	2	1	FIS/01	Y
3	Solid State Sensors	6	2	1	FIS/01	Y
4	Statistical Mechanics of Disordered Systems	6	2	1	FIS/02	Y
5	Surface Physics and Nanostructures	6	2	1	FIS/03	Y
6	Statistical Physics and Machine Learning	6	2	1	FIS/02	Y

Responsible for the Curriculum

Prof. Paolo Postorino

- E-mail: paolo.postorino@roma1.infn.it & paolo.postorino@uniroma1.it
- @ Fermi building
- Office room 401 & Lab HPS room 418 (IV floor)
- Lab LTS room 115 (I floor)

Complexity Science

ANNO	SEM.	CFU
1	1	
Introducti	on to Quantum Field Theory	6
Condense	d Matter Physics	6
Physics La	<u>b I</u>	6
Computin	g Methods for physics (C-INF)	6
Statistical	Statistical mechanics and Critical Phenomena (A)	
		30

ANNO SEM.

1

	2

Physics Lab II	
Condensed Matter Physics II	
Meccanica Statistica del Non Equilibrio (C)

English Language One among (Free Choice):

Advanced Machine Learning for Physics;

Deep learning and applied artificial intelligence (Informatica)

6 31

9 6

6

4

ANNO	SEM.	
2	1	
Machine L	earning (C-INF)	6
Physics of	Complex Systems (B)	6
One amon	g (free choice):	
Supercond	luctivity and Superfluidity;	
Statistical	mechanics of disordered systems;	
Introduzio	ne alla teoria dei processi stocastici;	
Statistical	physics and Machine learning	6
Internship		3
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	0.	21

ANNO SEM. 2 2 Thesis project

Disordered systems: liquid, glassy and soft matter

ANNO	SEM.	
1	1	CFU
Introduction to Quantum Field Theory		6
Condensed	Matter Physics	6
Physics Lab I		6
Computing Methods for Physics (C-INF)		6
Soft and Biological Matter (B)		6
3	rast and	30

ANNO	SEM.	
1	2	
Physics La	b II_	9
Condense	d Matter Physics II	6
Physics of	Liquids (A)	6
Biophysics	(C)	6
One amon	g:	
Deep learn	ning and applied artificial intelligen	ice;
Machine L	earning;	
Advanced	Machine Learning for Physics;	
or another	non-FIS course	6
English La	nguage	4
Totale		37

ANNO SEM.

2

Two among (free choice):

1

Statistical mechanics of disordered systems;

Introduzione alla teoria dei processi stocastici ed applic	azioni alla fisica
Statistical mechanics and Critical Phenomena	12
Internship	3
Totale	15

ANNO SEM. 2 2 Thesis project

Photonics and Quantum Technologies

ANNO	SEM.	CFU
1	1	
Introductio	6	
Condense	6	
Physics La	6	
Nonlinear	6	
Computing	g methods for physics (C-Inf)	6
alle i coltat titlet H		30
ANNO	SEM.	
1	2	
Physics La		9
Condense	6	
English La	4	
Photonics		6
One amon		8776) 8776
	opy methods and nanophotonics;	
	waves and solitons;	
	hoice non-FIS	6
		31
ANNO	SEM.	
2	1	
Physics of	Solids (A)	6
Quantum	6	
One amon	ig:	
Solid State	e Sensors;	
Surface Ph	sics and Nanostructures;	
One free c	hoice non-FIS (required)	6
Internship		3
		21

ANNO	SEM.
2	2
Thesis project	

Superconductivity, Strongly Correlated System, and Functional Materials

9

1	1	
Introductio	on to Quantum Field Theory	6
Condensed	d Matter Physics	6
Physics Lab	<u>1 1</u>	6
Computing	6	
One among	g:	
Statistical r	mechanics and Critical Phenomena (C);	
Nonlinear and Quantum Optics (C)		6
	2 I I I	30

1	2		
Physics	Lab II		
Conder	nsed Matter Physic	cs II	
English	Language		
Superco	onductivity and Su	perfluidity (B)	

One or Two among

One of Two a	aniong:		
Spectroscopy	methods and nanophotonics (B);		
Mathematica	al Physics (C-Mat);		
Photonics (C)	:		
Physics of liq	uids (C);		
another non-fis exam of group C		6 or 12	
		31 or 37	
ANNO	SEM.		
2	1		
Physics of So	lids (A)	6	
Many-Body P	Physics (B)	6	
Zero or One:	Surface Physics and Nanostructures (B);		
	Quantum Information and Computation (C);		
	Solid State Sensors (C):		

	quantant information and computation	1.41
	Solid State Sensors (C);	
	Machine Learning (C-Inf -Informatica);	
	Advanced Machine Learning for Physics	;
	or other non-Fis exam	0 or 6
Internship	8	3
		21 or 15
ANNO	SEM.	
2	2	
Thesis nro	iert	38

Surface Physics and Nanostructures

ANNO	SEM.	CF	
1	1		
Introduction	to Quantum Field Theory	6	
Condensed N	Natter Physics	6	
Physics Lab I		6	
Computing m	nethods for physics (C-Inf)	6	
One among:	Nonlinear and Quantum Optics (C);		
	Statistical mechanics and Critical Phenomena (C)	6 30	
ANNO	SEM.		
1	2		
Physics Lab II		9	
	Aatter Physics II	6	
English Langu	lage	4	
Spectroscopy methods and nanophotonics (B)			
One or two a	mong:		
Superconduc	itvity and Superfluidity (B);		
Photonics (C)	5		
Physics of liq	uids (C);		
Mathematica	I Physics (C-mat);		
or another no	on-Fis exam 6 d	12	
	31 or	37	
ANNO	SEM.		
2	1		
Physics of So		6	
Surface Physi	ics and Nanostructures (B)	6	
One or zero a	among:		
Many Body P			
Quantum Infe	ormation and Computation (C);		
	ensors (elective free choice);		
Machine Lear	ming (C-inf);		
Advanced Ma	achine Learning for Physics;		
or another n	on-fis exam 6	00	
		3	
Internship			

2	2		
Thesis pro	ject		