Quantum Walk in Integrated Photonics

(for Quantum Computation and Simulation)

Syed Adil Rab
Quantum Optics Group & Quantum Information Lab

Supervisor: Prof. Fabio Sciarrino
Quantum Computation and Information

Richard Feynman - 1982

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy”

Trapped Ions Solid State Photons
Integrated Photonics

Compacting bulk optical tables into small chips.

Femtosecond laser written is a novel technique which allows:

- 3D structures
- polarization insensitive waveguides
- fast prototyping

Directional Couplers

Phase Control
Quantum Walk

Classical Random Walk:

Quantum Walk:
What are the questions?

Further advancement in femtosecond laser written photonic platform, studying more complex structures: larger number of waveguides, operation in different wavelengths, reconfigurability of the phase shifters.

Experiments in quantum information and simulation of quantum systems with increasing complexity.

Develop a state-of-the-art system for photonic quantum simulation with generation, control and detection of quantum light.
Reconfigurable Integrated Photonic Chip at Telecom Wavelengths - I

Femtosecond laser written Mach-Zehnder interferometer operating at telecom wavelength (1550nm).

Generation of pairs of single photon by Spontaneous Parametric Down Conversion (SPDC) using a Bismuth Borate crystal (BiBO).

Hong Ou Mandel interference dip visibility

$$V = 0.981 \pm 0.007$$
Reconfigurable Integrated Photonic Chip at Telecom Wavelengths - II

Thermally reconfigurable photonic device allows to control the phase of the photon in waveguide.

\[\phi = \varphi_1 - \varphi_2 = \Phi_0 + \sum_i \alpha_i P_i \]

The temperature gradient due the heating of the waveguide creates a “bend” on the waveguide.
Reconfigurable Integrated Photonic Chip at Telecom Wavelengths - III

Measurements were done with classical light, single photon and two photon interference.

\[b_i^\dagger = \sum_j U_{ij}^{\text{theo}} a_j^\dagger \quad U^{\text{theo}} = \begin{pmatrix} \sin \phi & \cos \phi \\ \cos \phi & -\sin \phi \end{pmatrix} \]

The results show the correct functioning of the device both classically and at a quantum level.

A tomography of the device shows an average gate fidelity of:

\[\mathcal{F} = 0.998 \pm 0.001 \]
Photonic Simulation of Entanglement Generation and Transfer in a Spin Chain - I

Simulation of spin chain dynamics and generation of entanglement using a photonic platform.

Bosonic statistics: \(|\Psi^+ \rangle = \frac{|HV \rangle + |VH \rangle}{\sqrt{2}} \) \(\text{Symmetric}\)

Fermionic statistics: \(|\Psi^- \rangle = \frac{|HV \rangle - |VH \rangle}{\sqrt{2}} \) \(\text{Anti-Symmetric}\)

SPDC photon generation \(\beta\)-Barium Borate crystal (BBO)

392.5nm \(\rightarrow\) BBO

785nm

785nm

\(\text{p polarization analysis}\)

IF

HWP

1/2 BBO

PC

delay lines
Photonic Simulation of Entanglement Generation and Transfer in a Spin Chain - II

Quantum transport for boson and fermion in a 1D chain.

Quantum transport in a spin chain

Simulation with a M step discrete-time quantum walk

Entanglement generation at half dynamic

Encoding

1 2 3 4 5

H, t^*

$t = 0$

$t = t^*/2$

$t = t^*$

Néel state: $\downarrow\uparrow\downarrow\uparrow\downarrow$

Entanglement generation at half dynamic

$|\psi^+_{1p}\rangle_{15}$

$|\psi^+_{1p}\rangle_{24}$
Photonic Simulation of Entanglement Generation and Transfer in a Spin Chain - III

Symmetric Input state

Strong contribution on the diagonal term of the matrix.

Bosonic Coalescence

Anti-Symmetric Input state

Strong contribution on the off-diagonal term of the matrix.

Pauli Exclusion Principle
Photonic Simulation of Entanglement Generation and Transfer in a Spin Chain - IV

Resulting state in a perfect Néel state transfer: $|\psi_{\text{out}} \rangle = |\psi_{1p}^+ >_{15} |\psi_{1p}^+ >_{24} |0_{1p} >_3$
Photonic Simulation of Entanglement Generation and Transfer in a Spin Chain - V

Entanglement certification of the one-photon path-encoded Bell state

\[|\psi_{out} \rangle = (\alpha|10 >_{15} + \beta|01 >_{15})(\gamma|10 >_{15} + \delta|01 >_{15})|0 >_{3} \]

1) Check of coherence between states (15) and (24).

\[V_{S1} = 0.51 \pm 0.05 \quad V_{S5} = 0.40 \pm 0.03 \]
\[V_{S2} = 0.74 \pm 0.03 \quad V_{S4} = 0.82 \pm 0.03 \]

2) Entanglement fraction with respect to the ideal one-photon Bell state

\[\epsilon_{ij} = \langle \psi_{1p}^{+}|\rho_{ij}|\psi_{1p}^{+} \rangle \]

\[\epsilon_{15} = 0.66 \pm 0.03 \quad \epsilon_{24} = 0.74 \pm 0.03 \]
Superconducting Single Photon Detectors

Superconducting detectors operating at low temperatures (~4K).

Photon absorption breaks Cooper pairs, so there is a local brake of superconductivity.

High detection efficiency: ~ 70% (possibility to go even higher).

Operating at high efficiency at free running mode.

Dark counts of the order of few hundreds (Low).

Short detector dead time.
Acknowledgements

Marie Curie Training Network in Photonic Integrated Compound Quantum Encoding - (PICQUE).

La Sapienza - Quantum Optics Group (G21).

Consiglio Nazionale delle Ricerche - Istituto di Fotonica e Nanotecnologie (CNR-IFN)