A History of the science of light from Galileo’s telescope to the laser and the quantum information revolution

1. **Light in the seventeenth and eighteenth centuries:**
 - How the invention of the telescope and the pendulum has started the scientific revolution. The roles of Galileo and Huygens.
 - First determination of light’s velocity by Römer’s observation of Jupiter’s moons
 - Snell and Descartes.
 - Fermat and the principle of least time.
 - Huygens and the emergence of the wave theory.
 - Newton, the emission theory and the spectrum of light.
 - The aberration of stars.
 - Connection between optics and the exploration of the Earth: the measure of the meridian and the oblateness of the planet.

2. **Light in the nineteenth century:**
 - Thomas Young and interferences
 - Malus and the polarization of light
 - Fresnel, the diffraction theory and the vector model of light’s vibrations
 - Fourier and spectral analysis
 - Measurement of light velocity in air and in a medium: Fizeau and Foucault
 - The birth of electromagnetism: Oersted, Ampère and Faraday
 - The notion of field
 - Maxwell’s equations
 - What was known about light at the end of the nineteenth century

3. **The first cloud of Lord Kelvin: Relativity**
 - The Ether puzzle
 - Michelson Morley experiment
 - The principle of special relativity: from Galileo to Einstein
 - Relativity of simultaneity
 - Relativity of time and lengths
 - The twin paradox
 - Lorentz transformations
 - Minkowsky four-dimensional space
 - $E=mc^2$
 - The principle of equivalence and general relativity
 - The curvature of space-time
 - The proofs of relativity

4. **The second cloud of Lord Kelvin: quantum physics**
 - The puzzle of blackbody radiation and Planck’s law
 - Einstein, the photoelectric effect and the photon
 - How the quanta extended to matter: the heat capacity of solids
 - The planetary model of the atom: Rutherford, Bohr and Sommerfeld
 - Einstein and stimulated emission
 - The Bose Einstein statistics and the identity of particles
- Bosons and fermions
- De Broglie and matter waves
- Schrödinger, Heisenberg, Dirac and Feynman: the modern quantum theory.

5. **The principles of quantum physics**
 - The Superposition principle
 - Measurement and complementarity
 - Uncertainty relations
 - Discussion of thought experiments
 - Entanglement and non-locality
 - Bell’s inequalities
 - The quantum-classical limit: Feynman’s diagrams
 - Decoherence theory

6. **The first quantum revolution in technology**
 - Discovery of the spin: the Stern Gerlach experiment
 - Rabi and the molecular beam method
 - Nuclear magnetic resonance
 - Magnetic resonance imaging
 - The atomic clock
 - The GPS
 - Optical pumping
 - The invention of the laser

7. **The laser revolution**
 - The precision revolution: high resolution spectroscopy
 - The sensitivity revolution: manipulating single particles
 - The light intensity revolution: Non-linear optics
 - Ultra-short pulses and ultra-high intensities: extreme light

8. **Laser cooling and trapping**
 - Principle of Doppler cooling
 - Sub-Doppler cooling
 - Optical tweezers and optical lattices
 - Magnetic traps
 - Atomic interferometry
 - Evaporative cooling
 - Degenerate quantum gases

9. **Ion trapping**
 - Principle of ion trapping
 - Ion manipulation
 - Ion quantum jumps
 - Laser cooling of ions
 - Ions as quantum bits
 - Quantum information with trapped ions
10. The physics of Rydberg atoms
 - Orders of magnitude
 - Preparation and detection of Rydberg atoms
 - Rydberg atom spectroscopy
 - Interaction between Rydberg atoms
 - Applications of Rydberg atoms to quantum information

11. Cavity quantum electrodynamics
 - Coupling two-level atoms to a cavity field mode
 - Enhancement and suppression of spontaneous emission: the Purcell factor
 - The Jaynes Cummings model
 - Vacuum Rabi oscillation
 - Quantum information in Cavity QED
 - Realizing thought experiment in Cavity QED

12. Quantum non-demolition experiments:
 - Detecting photons without destroying them: the principle of QND methods
 - QND Photon counting illustrating a quantum measurement
 - Tomographic reconstruction of quantum states
 - Quantum feedback experiments
 - Quantum Zeno experiments

13. Schrödinger cat states and decoherence studies
 - Preparation of quantum state superpositions by dispersive methods
 - Preparation of cat states by resonant methods
 - Experimental study of decoherence
 - Comparing Cavity QED, circuit QED and ion trap physics

14. Quantum metrology
 - Principle of quantum metrology
 - The standard quantum limit
 - Sensitivity beyond the standard quantum limit: squeezed states
 - Sensitivity beyond the standard quantum limit: Entangled sates
 - Quantum electrometers and magnetometers

15. Conclusion: coming back to the history of time measurement
 - The importance of precise time measurement, from Huygens to the lasers
 - The gain in precision from the 17th to the 20th century
 - The optical clocks
 - Frequency combs
 - Ion clocks versus neutral atom lattice clocks
 - Relativity tests
 - Cosmology tests
 - General conclusion of lectures.