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Lecture 7: Entanglement
Entanglement is the strangest feature of quantum physics. Interacting quantum systems generally end-up in a
state which cannot be described as a tensor product of independent quantum states corresponding to its parts.
The non-separable global state is said to be entangled. This property, a direct consequence of the superposition 
principle, has been known since the early days of quantum physics as a fundamental feature of atomic states. 
Interactions between quantum systems or measurements performed on them generally result in entanglement. In 
order to describe measurements performed on a system A entangled with an unobserved system B, the concept 
of the quantum state vector in a Hilbert space has to be replaced by that of a density operator. The properties
of this operator and its physical interpretation are described. The density operator is useful to quantify the 
degree of entanglement of a bi-partite quantum system. Maximum entanglement occurs when all information 
about the system is contained in correlations between measurements performed on the two parts and no 
information can be obtained from observations made on one part alone. The connection between entanglement
and complementarity is discussed. Entanglement of a system with a large environment is analysed in connection
with the notion of decoherence. Quantum measurement is also described as a process starting by an
entanglement between the measured microscopic system and a macroscopic measuring apparatus. The principle of 
conditional quantum gates coupling a « control » and a « target » qubit will be studied. The properties of these
gates, essential tools in quantum information as generators and analysers of entanglement, will be described.
Finally, we relate entanglement to the «non-locality» of quantum physics. We recall Einstein’s argument which
stated, against Bohr, that the existence of correlations between entangled systems separated by large distance 
was the indication that quantum physics was incomplete and implied the existence of supplementary hidden
variables. We present Bell’s formulation of Einstein’s argument and describe an experiment demonstrating the 
non-existence of these hidden variables, vindicating Bohr against Einstein. We also describe how two partners
can exchange a quantum state by a process called « teleportation ». This is a procedure using a quantum channel
(the sharing of entangled particles) and a classical one (communication of two bits by an electromagnetic signal).   
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Quantum Entanglement
Consider a system S made of two parts A and B in 
Hilbert spaces HA and HB. Expand the most general
state of S on a basis of kets tensor products |iA>|µB>: 

ψ S = α i,µ iA
i,µ
∑ ⊗ µB

|yS> is said to be entangled if it cannot be factored
as a tensor product of a state of A by a state of B:  

ψ S ≠ ϕ A ⊗ φB
Entanglement is a general feature of composite 
systems, implied by the linearity of quantum physics. 
It results from interactions between A and B or 
from measurements of observables of OS admitting
entangled A-B states as eigenstates. We consider
here the discrete dimension case, which generalizes
straightforwardly to infinite dimension by replacing
sums by integrals. We have already encountered
entangled systems. In the Young double slit thought
experiment, the system S « particle + moving slit » 
is entangled. The particle (A) crosses the double

slit in the superposition state |y1A>+|y2A>, the 
moving slit (MS) being in ground state |0MS> 
of its harmonic oscillator. If A crosses 
through slit 1, it receives a momentum kick –p 
while the slit moves with momentum p in 
opposite direction. 

Entanglement is an essential feature at the 
heart of the concept of complementarity, of 
measurement theory and decoherence. It is
also at the center of the notion of quantum 
non-locality. We discuss here these important 
aspects of quantum theory after recalling some
definitions and general properties of 
entanglement. 

y1A

y2A

1
2

ψ 1A + ψ 2A( )⊗ 0MS →

1
2
T−P ψ 1A ⊗ pMS + ψ 2A ⊗ 0MS( )

Examples of entanglement in atomic systems
Two quantum systems in a pure state are 
entangled when this state cannot be factored
as a tensor product of states belonging to the 
Hilbert state of each component.   

ψ
AB

≠ ψ A ⊗ ψ B

Example 1: ground state of He atom:

S = 0 = 1
2

+
1
−

2
− −

1
+

2( ) ≠ ψ 1 ⊗ ψ 2

Example 2: Hyperfine structure of H ground state

The electron spin interacts with
the nuclear spin of the proton. 
The total spin F is either 1 one or 
zero. The F=0 ground state is
entangled: 

F = 0 = 1
2

+ p −e − − p +e( )

F=0

F=1

The two electrons are in the ground orbital state 
(n=1, L=0). The orbital wave function is symmetrical
by electron exchange. The spin state must thus be
the S=0 antisymmetrical state: This state is non 
separable, hence entangled:
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Entanglement produced by interaction

A B Ψ(ti AB
= ψ (ti ) A

⊗ ψ (ti ) B

Ψ(t f AB
≠ ψ (t f ) A

⊗ ψ (t f ) B

Example: flipping of two spins interacting with the Hamiltonian:  

At half-flipping time, maximum entanglement

H = ε0 ↑↓ ↓↑ + ↓↑ ↑↓( )
i!
∂ψ (t)

∂t
= H ψ (t) ψ (t) = cos

ε0t
!

⎛
⎝⎜

⎞
⎠⎟
↑↓ − sin

ε0t
!

⎛
⎝⎜

⎞
⎠⎟
↓↑ ε0t

!
= π
4

ψ (t) = 1
2

↑↓ − ↓↑( )

Entanglement produced by joint measurement

A B Ψ(ti AB
= ψ (ti ) A

⊗ ψ (ti ) B

Ψafter AB
≠ ψ

A
⊗ ψ

B

Example: measure total spin S on two spins initially in the  state ↑↓

Measurement of joint 
observable

System state collapses in 
entangled state

↑↓ = 1
2

↑↓ + ↓↑( )+ 1
2

↑↓ − ↓↑( )
S = 1Result found with probability ½ collapses state in entangled state 

1
2

↑↓ + ↓↑( )
Result S = 0 found with probability ½ collapses state in entangled state 1

2
↑↓ − ↓↑( )
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Density operator formalism
Let us now introduce the density operator formalism, very useful to describe measurements
performed on the parts of an entangled system S. To each state |yS> of S , we associate the 
projector:

ψ S ⇒ ρS = ψ S ψ S

We call it the density operator of the global state. This operator has a (0,1) spectrum, the state 
|yS>  corresponding to eigenvalue 1, all the states orthogonal to |yS> to eigenvalue 0. 

Consider now an observable OS,   diagonal in a basis {|i,a,>} of states whose projectors are |i,a><i,a|:

OS = aiPi
i
∑ Pi = i,α

α
∑ i,α

According to the measurement postulate, the probability to find the result ai when measuring Os
on state |yS> is:

Πi = ψ i,α
α
∑ 2

= i,α ψ
α
∑ ψ i,α = Tr PiρS( )

with

We recall that the trace of an operator is the sum of its diagonal elements (result independent of basis)

Up to now, we have simply rewritten in an equivalent formalism the postulate of measurement, replacing a 
quantum state by its projector. This replacement becomes interesting when we focus on measurements
performed on one part A or B of S, while disregarding the other part. We discuss this on next page. 

Measurements on part A of a system S made of two
parts A and B

Suppose that we measure OA without looking at B. This is equivalent to measuring OA.IB where IB is the 
identity operator in the Hilbert space of B. We can now expand the OAIB observable over a basis of 
eigenstates as: 

OA⊗ IB = aiPi
i
∑ Pi = i,β;µ

β ,µ
∑ i,β;µwith

The index b accounts for possible degeneracies of the OA spectrum and µ refers to any basis in the 
Hilbert space of B. The measurement postulate then gives the probability Pi of finding result ai when
measuring OA: 

Πi = i,β;µ ψ
α ,µ
∑ ψ i,β;µ = i,β

β
∑ µ ψ ψ µ

µ
∑

⎛

⎝⎜
⎞

⎠⎟
i,β

ρA = TrB ρS( )The bracket is the trace over B of the global density operator rS: 
we call it the partial density operator of the subsystem A 

We have thus finally: Πi = TrA ρAPiA( ) with PiA = i,β
β
∑ i,β

We retrieve the same formula as for a measurement performed on a global system, with one important 
difference: in general, rA, and rB unlike rS, are not projectors, but sums of projectors (see next slide). 

ρB = TrA ρS( )
We define in the 

same way

And the expectation value of OA is: OA = Πi
i
∑ ai = TrA(ρA PiAai

i
∑ ) = TrA(ρAOA)
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The density operators of parts of a global system 
are Hermitian operators with positive eigenvalues
and trace equal to 1. Their elements in a diagonal 
basis representing probabilities must be positive. 
The unity trace is required by the definition of 
probabilities:

Πi = TrA
i
∑ ρA PiA

i
∑⎛

⎝⎜
⎞
⎠⎟
= TrAρA = 1

The most general operator of this kind
writes in the basis where it is diagonal: 

ρA = λi ϕ i ϕ i
λi
∑ ; λi ≥ 0 and λi = 1

i
∑

If only one li is different from zero, we
retrieve the pure case discussed earlier: the 
density operator is a projector and the 
system is described by a pure quantum state 
containing the maximum information we can
get about A.

As soon as more than one li is non zero, the 
density operator describes a « mixture of 
states ». To predict the outcomes of 
measurement, we can consider that the system A 
is distributed among different |ji> states with
the probabilities li This statistical uncertainty
comes in addition to the uncertainty due to the 
randomness of quantum measurement. It is due to 
the fact that by getting entangled to another
system, A and B considered separately have lost
some information countained in the global system 
A+B. Note that the li’s are not probability
amplitudes. They are positive real numbers and 
they are not involved in interference effects. 

How recognize that a density operator represents a 
pure state or a mixture? Compute Tr(r2)

Pure state: only one li
non zero:

TrρA
2 = 1 TrρA

2 = λi
2

i
∑ < λi

i
∑⎛⎝⎜

⎞
⎠⎟

2

= 1

Mixture: more than
one li is non zero and 

TrrA2 <1

Properties of density operators: pure states and mixtures

Density operator of a spin ½: Bloch vector of a mixture
Let us consider as an important example the case 
of a spin ½. If it is part of a larger system and we
are considering only measurements on it
disregarding its environment, it will be described
by its density operator. It is represented by a 2x2 
Hermitian matrix which can always be expanded on 
a basis of 4 operators, the three Pauli matrices 
plus the identity operator:  

ρA = a0I + aiσ i
i
∑

The a0, ai coefficients must be real to ensure that
r is Hermitian. Moreover, the trace of the Pauli 
matrices being 0, we must have a0=1/2 to ensure
that the trace of r is 1. Finally we compute the 
expectation values of the Pauli operators and we
find: 

σ i = TrA(σ iρA) = aiTr (σ i
2 ) = 2ai

(because )Tr (σ iσ j ) = 2δ ij
We thus get the most general density operator
of a spin:

ρA =
1
2
I +
!
PBloch.

!σ⎡⎣ ⎤⎦
!
PBloch = σ i

!ei
i
∑

The ’’Bloch vector’’ PBloch has a modulus smaller or equal
to 1. This generalizes the Bloch sphere representation
of pure state (see lecture 6). Any mixture of spins is
represented by a Bloch vector inside the Bloch sphere
of radius one. The Bloch vector components are equal to 
the expectation values of the spin. If the tip of the 
Bloch vector reaches the surface of the sphere, this is
a pure state. The state PBloch =0 (center of sphere) 
represents a completely depolarized spin.  

= 1
2

1+ Pz Px + iPy
Px − iPy 1− Pz

TrA(ρA)
2 = 1+

!
P2

2

TrA(ρA)
2 ≤1 →

!
P ≤1

mixture Pure state
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Ψ AM = 1
2

ψ A(1) ψ M (1) + eiϕ ψ A(2) ψ M (2)( )

ρA = TrM Ψ A,M Ψ AM = 1
2
ψ A(1) ψ A(1) +

1
2
ψ A(2) ψ A(2)

+ 1
2
ψ A(1) ψ A(2) ψ M (2)ψ M (1) e

− iϕ + 1
2
ψ A(2) ψ A(1) ψ M (1)ψ M (2) e

iϕ

Fringe contrast: ψ M (2)ψ M (1)

Entanglement and complementarity

The more distinguishable the two M states are, the more information they store about the path of A 
and the smaller is the fringe contrast. The system M can be a measuring apparatus (like the moving

slit) or a passive environment. In this case, the loss of quantum coherence is called decoherence. The 
principle of complementarity is directly related to the properties of entanglement (see below). 

Generic description of a two pathes quantum interference
experiment involving a system A interacting with a 
« watching » system M which gets entangled with A :  

The interference signal is calculated with the density operator of A, obtained by tracing over the states of M:  

The interference terms are in the cross products and the fringe contrast is equal to the modulus
of the scalar product of the M system final states:

Π(x) = Tr x x ρA( ) = x ρA x

= 1
2
x ψ A(1)

2
+ 1
2
x ψ A(2)

2

+Re x ψ A(1) ψ A(2) x e
− iϕ × ψ M (2)ψ M (1( )

y1A

y2A

x
M

Entanglement and measurement
To measure an observable OA of a microscopic
system A, one has to couple it, via an amplifying
scheme, to a macroscopic meter M whose state 
will be directly read out. The coupling A-M must 
correlate eigenstates with different eigenvalues
of OA to orthogonal states of M. 

ψ = α i
i
∑ ai ; OA ai = ε i ai

ψ
A
ξO M

→ α i ai A
i
∑ ξi M

The state |x0>M is the « neutral » state of the meter and 
the |xi>M are non-overlapping wave packets
corresponding to different positions of the tip of the 
meter. Assuming that this tip moves along the Ox axis, 
the interaction can be described by the Hamiltonian: 

HAM = gOAPM
where PM is the meter momentum along Ox and g a 
coupling parameter.

U (t)ψ
A
ξ0 M

= e
− i
gOAPM
!

t
ψ

A
ξ0 M

= α i ai A
i
∑ ξ0 + gtε i M

Recalling that the momentum operator is the generator
of the meter translations, we then find easily: 

M is entangled with A. Measuring the meter final 
position yields the result x0+gtei with probability |ai|2
and collapses A into |ai>. Calling Dx the width of the 
meter wave packet and de the smallest eigenvalue
difference in the OA spectrum, we must have:  

gtδε > δξ
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Schrödinger cat

Consider the measurement of the observable OA of 
a two-level system (eigenstates |0>A and |1>A) and 
call |0>M and |1>M the mirror states of the meter. 
Suppose we measure A in the superposition state:  

ψ
A
= 1
2
0

A
+ 1

A( )
After interaction and before observing M, the A-
M system turns in the entangled state: 

ψ
AM

= 1
2
0

A
0

M
+ 1

A
1
M( )

The meter being macroscopic, the measurement seems to 
prepare a superposition of states with different classical
attributes: the tip of the meter points at the same time 
in different macrospically distinct directions: this looks 
like a Schrödinger cat (or like the moving slit in the 
Young thought experiment). 

Moreover, the situation is ambiguous because |Y>AM
can be written as well as: 

ψ
AM

= 1
2
⎡⎣ 0

A
+ 1

A( ) 0 M
+ 1

M( )
+ 0

A
− 1

A( ) 0 M
− 1

M( ) ⎤⎦
So what is being measured here: the observable having
eigenstates |0>A and |1>A or the one with eigentstates
|0>A+|1>A and |0>A-|1>A? These two observables do not 
commute and it is impossible that they could be
measured indifferently by the same apparatus. The 
problem here is that we have forgotten the environment!

Entanglement, environment and decoherence
ψ

AME
= 1
2
0

A
0

M
0

E
+ 1

A
1
M
1
E( )

ρAM = 1
2
0A,0M 0A,0M + 1

2
1A,1M 1A,1M

To solve the measurement paradox, consider that
the meter M interacts with an environment E (gas
molecules, thermal photons, internal degrees of 
freedom…). Quickly, information about M leaks into
E, the M-E entanglement being realized, in a simple 
model, by the transformation: 

This is again a manifestation  of complementarity: E 
plays for M the role of a measuring device which
transforms the state superpositions involving different
meter states into a statistical mixture. The disap-
pearance of the « cat’s coherences » describes the 
phenomenon of decoherence which occurs very fast for 
macroscopic meters (back to this point later).   

m
M
e
E
→ m

M
m⊕ e

E

where m and e, taking the values 0 and 1,  represent
the states of M and the states they are correlated to
in E and       describes the addition modulo 2. Assuming
that E is initially in state |0>E, the M-E interaction 
leaves |0>M|0>E invariant and transforms|1>M|0>E into
|1>M|1>E.   

⊕

The information about the state of the A-M system 
being inscribed in E, the coherence between different
M states is destroyed and the tri-partite A-M,E 
quantum state becomes an A-M density operator: 

After this interaction, the A-M system becomes tri-
partite: 

Note that in our model, the meter in states |0>M and 
|1>M couples with E without entanglement. This 
property defines the « pointer states » of the meter
and suppresses the measurement ambiguity: a given
apparatus measures the observable corresponding to 
its meter pointer states. It cannot be used to measure
indifferently non-commuting observables.  
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Quantifying entanglement: The Schmidt expansion of a bipartite state
The partial density operator rA of an A-B system 
is an hermitian operator in HA, expressed in its
diagonal basis as: 

ρA = λ j jA jA
j
∑

The lj are positive numbers summing up to unity:
λ j ≥ 0 λ j = 1

j
∑

By disregarding the quantum coherence between A and B, 
we lost information about the entangled system S. Our 
knowledge of the state of A is reduced. Instead of 
knowing that it is, like |yS>, in a ‘’pure’’ quantum state,  
we must describe it as a ‘’statistical mixture of states’’ 
|jA>’s, with the distribution of probabilities given by the 
lj’s. These probabilities are real numbers, not to be
confused with the c-number amplitudes which interfere
in the evolution of pure quantum states. Expanding over 
the |jA>|µB> basis, we can always express the most
general state of S as:  

ψ S = α jµ jA
j ,µ
∑ ⊗ µB = jA ⊗ jB

j
∑

with jB = α jµ µB
µ
∑

It associates to a basis [|jA>] in HA a «mirror» 
basis [|jB>] in HB. We can, without loss of 
generality, call A the part whose Hilbert space
has a dimension n smaller or equal to that of the 
other part. If nB>nA, the ‘’mirror basis’’ in HB
defines a subspace of B on which HA is mirrored
by the entanglement. The n-term Schmidt 
expansion is simpler and more informative than
the expression of |YS> expanded over nAnB terms.  

The |jB>’s are, like the |jA>’s,  orthogonal to 
each other as is easily shown: 

jB j 'B = α jµ
∗ α j 'µ = jA ρA j 'A = λ jδ jj '

µ
∑

Finally, we can replace the |jB>’s by the states 
normalized to unity: 

jB = !jB / λ j
and we obtain the Schmidt expansion of the 
entangled state: 

ψ S = λ j
j
∑ jA ⊗ !jB

Entropy of entanglement

ρA = λ j
j
∑ jA jA ρB = λ j

j
∑ !jB !jB

The partial density operators rA and rB have 
identical spectra which describes the statistical
common distribution of probabilities among the 
« mirror » states |jA> and |jB>: 

To quantify the loss of information in the system 
parts, one defines the entropy of entanglement
as: 

This definition reminds the Boltzmann entropy of 
a gas of N molecules distributed among n cells, 
with a fraction ni=Ni/N particle in cell n° i: 

As in the thermodynamical analog, the entropy
of entanglement measures the disorder in the 
assignment of A (and B) to n quantum states, i.e. 
the loss of information about the two parts of 
the system when they are entangled. Log 
function in basis n is chosen so that maximum 
entropy is 1. Two limiting cases:

All information is contained in parts A and B 
which are in separate pure states

SA = SB = 1⇒ ψ S = 1
n

jA ⊗ !jB ;
j
∑

ρA,ρB =
1
n
I :

No information in A and B 
separately. All information 

in A/B correlations

SA = SB = 0
one λ j=1⎯ →⎯⎯⎯ ψ S = jA ⊗ !jB

No entanglement (only one lj non zero)
SA = SB = −TrρAlogn(ρA) = −TrρBlogn(ρB )

= − λ j logn λ j λ j = 1
j
∑

⎛

⎝⎜
⎞

⎠⎟j
∑

SBoltzmann / kB = LogW = Log N !
ΠiNi !

∼

NLogN − N − NiLogNi − Ni( )
i
∑ =

NLogN − N ni(Logni
i
∑ + LogN ) = −N niLogni

i
∑

Maximum entanglement (all lj equal): 
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Entanglement of spin-like two level systems

!uA !uB

0uA

1uA

0uB

1uB

A B
ψ S = λ 0uA 0uB + 1− λ 1uA 1uB

λ

SA,SB

0.5 10

1

ϕBS
± = 1

2
0A0B ± 1A1B( )

ψ BS
± = 1

2
0A1B ± 1A0B( )

S 2 ϕBS
± = 2!2 ϕBS

± ; S 2 ψ BS
+ = 2!2 ψ BS

+

Sx ,y ,z ψ BS
− = 0 R!u (θ )ψ BS

− = ψ BS
−

Most general entangled state of two
spin-like particles

Entropy of entanglement vs l

Bell states: 4 mutually orthogonal 
maximally entangled spin-like states 
expressed in the basis of szAszB:

Three Bell states are symmetrical by particle
exchange and have total spin 1

One Bell state is antisymmetrical by exchange 
with S=0. It is invariant by all global rotations: 

Two qubit quantum gate
ψ

control

ψ
target

Utarget

A two-qubit quantum gate realizes a 
conditional dynamics: 

If control bit is in state |0> it remains in this
state and the state of qubit B is unchanged: 

0control ψ target gate operation⎯ →⎯⎯⎯⎯ 0control ψ target

1control ψ target gate operation⎯ →⎯⎯⎯⎯ 1control ⊗Utarget ψ target

By linearity:

α 0
c
+ β 1

c( )⊗ ψ
t gate operation⎯ →⎯⎯⎯⎯

α 0
c
ψ

t
+ β 1

c
⊗Utarget ψ target

A two-qubit quantum gate can entangle
or disentangle two qubits

If control bit is in state |1>, it remains in this
state and the the state of qubit B is
transformed by the unitary operation Utarget: 
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Two-qubit Quantum Gates: The control not gate

ψ
control

ψ
target

0,0 → 0,0

0,1 → 0,1

1,0 → 1,1

1,0 → 1,0

Conditional dynamics: the 
control is not changed and 
its state determines the 
evolution of the target: the 
target flips if and only if 
the control is in |1>

Truth table

σ x

The control-not gate realizes on the target state the 
addition in base 2 of the two bits : ac ,at → ac ,ac ⊕ at ; (ac ,at = 0,1)

The control gate produces entanglement:

1
2
0 + 1( )

c
0
t
→ 1

2
0,0 + 1,1( )

σ x

1
2
0 + 1( )

c

0
t

In reverse operation, the control gate disentangles two qubits:

1
2
0,0 + 1,1( )→ 1

2
0,0 + 1,0( ) = 1

2
0 + 1( )

c
0
t

1,1 → 1,0

Two-qubit interaction realizing a control-not gate

H = ε0(I −σ z )c ⊗ (I −σ x )t

H 0,0 = H 0,1 = 0

H 1,0 + 1,1( ) = 0
H 1,0 − 1,1( ) = 2ε0 1,0 − 1,1( )

1,0 U (t )⎯ →⎯⎯ 1
2
1,0 + 1,1( )+ e

−2iε0t /!

2
1,0 − 1,1( )

= 1
2
1+ e−2iε0t /!( ) 1,0 + 1

2
1− e−2iε0t /!( ) 1,1

1,1 U (t )⎯ →⎯⎯ 1
2
1,0 + 1,1( )− e

−2iε0t /!

2
1,0 − 1,1( )

= 1
2
1− e−2iε0t /!( ) 1,0 + 1

2
1+ e−2iε0t /!( ) 1,1

2ε0t / ! = π
1,0 → 1,1

1,1 → 1,0

See later how to realize in practice this Hamiltonian

Evolution of two qubit interacting
via the Hamiltonian: 

H spectrum:        
3 eigenstates

with 0 eigenvalue, 
1 eigenstate with

eigenvalue 2e0

0,0 → 0,0 0,1 → 0,1
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Entanglement and non-locality: the EPR paper
Einstein, Podolski and Rosen (EPR) analyzed measurements on an entangled system of 2 particles
performed at the same time by two observers (named Alice and Bob in the language of quantum 
information) located at an arbitrary large distance from each other. Only one spatial dimension is
considered.The particles, prepared in the past in an entangled state through a non-specified process, 
do not interact at the time of the measurement.

The entangled state at the time of measurement
(t=0) expanded on the basis of the particles
momenta exhibits maximum entanglement: 

ψ (0) = dpe− ipr0 /! p
A∫ ⊗ − p

B

In the position basis, the same state writes:
ψ (xA,xB;t = 0) = xA,xB ψ (0) =

∫ dpeip(xA−xB−r0 )/! = δ (xA − xB − r0 )
where r0 is a free parameter fixed during the 
preparation of the state, for instance equal to 
the distance separating Alice from Bob. 

It results from these expressions that the 
measurements of momenta and positions by 
Alice and Bob are perfectly correlated, with
eigenvalues satisfyng the conditions: 

pA + pB = 0 ; xA − xB = r0
These formulas illustrate the essential feature
of entanglement: the position and momentum of 
each part is completely undetermined, while
their correlations are maximum. The operators
XA-XB and PA+PB can be simultaneously
measured because these two observables of 
the global system commute: 

XA − XB ,PA + PB⎡⎣ ⎤⎦ = 0

New York Times,
May 4th 1935
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Einstein’ argument about incompleteness of quantum physics
Alice can determine the position or velocity of the 
particle she detects without having to touch it or 
to interact with it in any manner.  She can ask Bob 
to measure X or P and to tell her the result. Due 
to the perfect correlations of the entangled
state, she then knows with certainty the values of 
X or P for her particle.  
The situation looks similar to a classical game: A 
third player paints a blue and a red spot on two
balls sealed in two envelopes and sends one to 
Alice, the other to Bob. Alice does not need to 
open her envelope to find out what color she
received. She just needs Bob to tell her his
result. The game can also be modified to 
simulate classicaly the non-commutation of X and 
P. The balls might be small balloons of slightly
different sizes. Opening the box and exposing
them to light to see the color makes them
explode, preventing to find out their size.

Probing the size must be done by touching the 
balls in the dark, but this contact erases the 
paint and the information about the color of 
the ball. For each envelope she receives, Alice 
can, without opening it, know for sure either
the color or the size of the ball by asking Bob 
to check for her. Einstein concluded that the 
quantities X or P which Alice could obtain
without interacting with her particle.  must 
have been, like the color or the volume of the 
ball in the classical experiment, already
existing prior to Bob’s measurement. They must 
have been « elements of reality » created in 
the process which prepared the entangled
state. This preparation must have involved
hidden variables, not expressed in the wave
function, meaning that the description of the 
physical world given by quantum physics must 
be incomplete.  

Spin version of the EPR experiment
The EPR thought experiment with continuous variables 
presents many difficulties. The preparation of the 
entangled state, which is fully delocalized in position 
as well as in momentum space is not specified which
makes the description of an experiment difficult
(what is the apparatus used to prepare the state?). 
Moreover, the maximum entanglement in X occurs only
at t = 0. EPR did not consider the time dependence of 
the state, which does not conserve the perfect spatial 
correlations because XA-XB does not commute with
the global Hamiltonian of the free particles:   

XA − XB ,
PA
2

2m
+
PB
2

2m
⎡

⎣
⎢

⎤

⎦
⎥ =
i!
m
PA − PB( )

The EPR wave function becomes at time t: 

and,  due to the quadratic term in the p-exponential,the
full correlation between XA and XB is lost for         t ≠ 0

ψ (xA,xB;t) = xA,xB ψ (t) = ∫ dpeip(xA−xB−r0 )/!e− ip
2t /m!

A first improvement in the EPR problem
was made by Bohm in the 1950’s who
showed that the Einstein arguments could
be repeated by considering a system of 
two spin systems on which Alice and Bob 
measure non commuting spin components. 
The situation becomes simpler because
the continuous integrals become discrete
sums and the observables of the entangled
system are now time independent. 
A second critical step was achieved by 
J.Bell in 1964,  who proposed a feasible
thought experiment in order to check 
whether the assumption of EPR that
quantum mechanics is incomplete can be
validated or contradicted. This is the so
called « Bell’s inequality test » which is
presented on the next slides, along with
the first crucial experimental
implementation.
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Non-locality in the spin version of the EPR experiment
Assume that Alice and Bob share a pair of particles
prepared in the Bell’s state: 

ϕBS
+ = 1

2
0A,0B + 1A,1B( )

If A and B measure their particles in the same Oz direction, 
they always find the same result, which is randomly +1 if the 
system is projected on |0A0A>, -1 if it collapses in |1A1A>.
Let us show that the same perfect correlation holds if the 
measurements are performed along any arbitrary direction u
in the x0z plane.  

The tensor product of the Pauli operators in the direction 
making an angle q with Oz is:

It is easy to check that the action of the first two terms on 
|j+BS> leaves this state unchanged for any q, while the last 
term gives 0: 

σ u
Aσ u

B ψ BS
+ = ψ BS

+

The suAsuB operator is diagonal in the spin 
basis pointing along u. Its degenerate
eigenvalues are +1 with eigenstates |0,0>u and 
|1,1>u and -1 with eigenstates |0,1>u and |1,0>u
The fact that suAsuB leaves |j+BS> invariant 
means that this state belong to the subspace
with eigenvalue +1 of this operator. In other
words, measuring the two particles of the pair 
along any arbitrary direction u must yield a 
perfect correlations: both results must be
either +1 or -1.    
Einstein’s argument then applies: Alice can
know the value of any component of her
particle’s spin in the xOz plane without
touching her particle, by merely asking Bob to 
measure his particle and tell her the result. 
One is thus forced to admit either the 
« spooky action at a distance » implied by non-
locality, or the existence of hidden variables. 
The discussion made here with one of the 4 
Bell states could be repeated with the other 3. 

σ u
Aσ u

B = cos2θσ z
Aσ z

B + sin2θσ x
Aσ x

B + sinθ cosθ σ x
Aσ z

B +σ z
Aσ x

B( )

Bell’s inequalities

a

a’

b

b’

Bell state 
source

+1 +1-1 -1ϕBS
+ = 1

2
0A,0B + 1A,1B( )

Alice and Bob share pairs of spins prepared in the Bell state | j+BS>. For each pair, A measures the spin of her
particle along one of two directions ua or ua’ while Bob measures his particle’s spin along either ub or’ ub’. The 
four possible results are ea,ea’,eb,eb’ equal to +1 or -1. From a large set of pairs analyzed in this way, Alice and 
Bob get the averages of the four correlations eaeb, eaeb’,ea’eb and ea’eb’. 

If the e’s are « elements of reality » as assumed by Einstein, all must exist for each pair, even if only two can
be actually measured due to the non-commutation of the Pauli operators. The e satisfy obviously the equality:

=
B
∑ (εa − εa ' )εb + (εa + εa ' )εb ' = ±2

And the average of this sum over a large number of realizations (each one contributing to one out of the four 
possible terms) is: 

B
∑ = εaεb − εa 'εb + εaεb ' + εa 'εb ' It  is obviously bounded by -2 and +2: −2 ≤

B
∑ ≤ +2

This Bell inequality is violated by quantum physics for some spin polarizations
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Quantum mechanical calculation of the Bell sum
According to quantum physics, the mean values of the e
products are given by the expectation values of products
of Pauli operators. Measuring a spin first in one direction, 
then at an angle q with that direction yields a mean value 
for the second measurement equal to cos2(q/2) –sin2(q/2) 
= cos q. The correlation between a measurement by Alice 
and one by Bob made with spin directions making an angle 
qab is thus <sasb>= cosqab and we get for the Bell sum: 

B
∑ = cosθab − cosθa 'b + cosθab ' + cosθa 'b '

Make the angle choice: θab = θb 'a = θa 'b ' = θ ; θa 'b = θa 'b ' +θb 'a +θab = 3θ a

a’

b

b’The Bell sum 3cosq-cos3q plotted versus 
q exhibits regions of q values violating Bell’s
inequality. Maximum violation occurs for 
q=p/4 and 3p/4( respectively). 
Points are experimental (see next slide). 

+2 2 and − 2 2

θ
+ σ z + θ

= cos2 θ
2

⎛
⎝⎜

⎞
⎠⎟
− sin2 θ

2
⎛
⎝⎜

⎞
⎠⎟
= cosθ

+θ

+ z

− z

First measurement
projects spin in direction 
+q. The mean value of spin 
along Oz is then: 

q
pp/2p/4

σ −

σ − σ +

σ +
e,m = 0

g,m = 0

i,m = +1i,m = −1

D1 D2

Aspect’s experiment
The Bell’s inequality test has been realized by 
Aspect in 1982 with pairs of blue/red photons 
emitted by Calcium atoms in a radiating cascade. 
The photons were detected with four different
polarizations. The polarizers were randomly
switched in a time interval shorter than the one it
takes for light to travel from one detector to the 
other, to preclude any possible information transfer
between them.  Correlations similar to the ones
discussed in the spin model are collected (remark
that two orthogonal states of linear light 
polarization correspond to polarizers oriented at 
90°, while for the spins,  state othogonality means
that the spins make an angle of 180°). When
translated in spin language, the variation of the Bell 
sum as a function of q agrees with the prediction of 
quantum mechanics. The Bell’s sum maximum or 
minimum             are well outside the bounds of 
hidden variable predicted values (see figure on left
where points are experimental and the curve
represents the 3cosq-cos3q function)    

±2 2
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Quantum teleportation
ϕ AB
u = 1

2
0A0B + 1A1B⎡⎣ ⎤⎦

Ψu =α 0u + β 1u

1. Alice and Bob separated by  a large distance share a pair of entangled qubits A,B

2. Alice is given a qubit u prepared in a state |Yu> unknown by her and by Bob and 
her task is to send a copy of this state to Bob

3. Alice performs on her side a joint measurement on the system u+A and finds
one out of four possible results. This measurement induces the collapse of the B 

qubit of Bob in one state out of four possible states. 

4. Alice communicates her result to Bob in the form of a two bit sequence and Bob, 
depending on this classical information, performs a unitary operation on qubit B which

brings it in state |Yu>. 

A Bu

2 Ψu φAB
u = α 0u + β 1u⎡⎣ ⎤⎦ 0A0B + 1A1B⎡⎣ ⎤⎦

=α 0u0A 0B +α 0u1A 1B( )+ β 1u0A 0B + 1u1A 1B( )

0u0A = 1
2

φuA
+ + φuA

−( ) ; 1u1A = 1
2

φuA
+ − φuA

−( )
0u1A = 1

2
ψ uA

+ + ψ uA
−( ) ; 1u0A = 1

2
ψ uA

+ − ψ uA
−( )

Quantum Teleportation: Alice’s measurement
Let us expand the initial state of the three qubit system  (u,A,B) on the tensor product basis 

|a,b,c> (a,b,c=0,1): 

Then change basis to expand the three qubit state on the tensor product basis of the Bell’s states of the 
u,A couple of qubits possessed by Alice by the qubit B under the control of Bob:   

and we rewrite the initial state as: 

2 Ψu φAB
u = φuA

+ α 0B + β 1B⎡⎣ ⎤⎦ + φuA
− α 0B − β 1B⎡⎣ ⎤⎦

+ ψ uA
+ α 1B + β 0B⎡⎣ ⎤⎦ + ψ uA

− α 1B − β 0B⎡⎣ ⎤⎦

Alice thus needs to measure the observable of the (A,u) system admitting Bell’s states as 
eigenstates in order to collapse Bob’s qubit in one out four superposition states 

ϕu,A
± = 1

2
0u0A ± 1u1A( )

ψ u,A
± = 1

2
0u1A ± 1u0A( )

(u,A) Bell 
states: 

Change of basis 
for (u,A) system



07/03/2022

16

2 Ψu φAB
u = φuA

+ α 0B + β 1B⎡⎣ ⎤⎦ + φuA
− α 0B − β 1B⎡⎣ ⎤⎦

+ ψ uA
+ α 1B + β 0B⎡⎣ ⎤⎦ + ψ uA

− α 1B − β 0B⎡⎣ ⎤⎦

Quantum Teleportation: Alice’s measurement (continued)

Alice realizes a control-Not gate with qubit u as control and A as target, 
followed by a one qubit unitary operation on qubit u: 

σ x

(σ x +σ z ) / 2

(σ x+σ z )/ 2
⎯ →⎯⎯⎯

(σ x+σ z )/ 2
⎯ →⎯⎯⎯

ϕuA
+⎯ →⎯ 0u 0A

ϕuA
−⎯ →⎯ 1u 0A

ψ uA
+⎯ →⎯ 0u 1A

ϕu,A
± = 1

2
0u0A ± 1u1A( )

ψ u,A
± = 1

2
0u1A ± 1u0A( )

control not⎯ →⎯⎯⎯ 1
2
0u ± 1u( )⊗ 0A

control not⎯ →⎯⎯⎯ 1
2
0u ± 1u( )⊗ 1A

ψ uA
−⎯ →⎯ 1u 1A

u

A

Alice gets a two-bit information indicating on which Bell state the (u,A) system has 
collapsed and she sends by a classical channel the values of these bits to Bob.

2 Ψu φAB
u = φuA

+ α 0B + β 1B⎡⎣ ⎤⎦ + φuA
− α 0B − β 1B⎡⎣ ⎤⎦

+ ψ uA
+ α 1B + β 0B⎡⎣ ⎤⎦ + ψ uA

− α 1B − β 0B⎡⎣ ⎤⎦

ϕ AB
u = 1

2
0A0B + 1A1B⎡⎣ ⎤⎦

0,0 or 1,0 or 0,1or 1,1

Quantum Teleportation: Bob’s action
Quantum channel

Classical channel

Depending on the classical information received from Alice, Bob applies an adapted unitary
transformation UB on qubit B:

In all cases, Qubit B ends in state 

α 0 + β 1
which completes teleportation
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The main features of teleportation

ϕ AB
u = 1

2
0A0B + 1A1B⎡⎣ ⎤⎦

0,0 or 1,0 or 0,1or 1,1

Neither Alice nor Bob need to know the state which has been teleported

Teleportation destroys the state on Alice’s side (otherwise, it would be a form of cloning)

The transfer of quantum information from Alice to Bob does not violate causality since it
requires a classical communication channel which cannot be superluminal

Quantum channel

Classical channel

Teleportation is an essential procedure in quantum information protocols

α 0 + β 1α 0 + β 1

A two-bit transfer is enough to communicate an information about two probability amplitudes (a,b) 
which would require many more bits to be communicated by completely classical means

Practical implementation of teleportation will be described in later lecture 

Concluding remarks

In lectures 4 to 7,  I have introduced the principles and main features of quantum physics, a 
science which has started by general considerations about some mysterious properties of light, 
and has disclosed to us the microscopic world of atoms and photons. 

I will describe in the next lectures several applications in the domains of electromagnetism and 
optics which have been made possible by the knowledge of the quantum laws: magnetic resonance, 
optical pumping, the maser and the laser, the atomic clocks and the GPS are among the inventions 
which have changed our lives during the second part of the twentieth century.These technological
advances have also made possible fundamental experiments in basic science: very high resolution
spectroscopy of atoms and molecules, physics of ultra-short and ultra intense light pulses, 
investigation of extremely low-temperature phenomena… 

Describing the progresses in the fundamental and applied aspects of the science of light during
the last century illustrates the symbiotic link between « blue sky » science motivated by curiosity
and « useful science » aiming at solving practical or societal problems. One cannot develop and 
thrive without the other.


