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Lecture 6: Angular momentum, spin and statistics

In addition to the orbital AM, quantum particles have a spin, of relativistic origin, which can be viewed as 
related to an intrinsic dynamical rotation of the particle around itself. The spin has like the orbital AM a 
discrete spectrum. The l value of the electron spin is equal to ½ and its component along any given direction 
takes the values           (spin ½). The quantum states associated to the electron spin evolves in a two-dimension 
Hilbert space whose operators can be expressed as linear combinations of the identity operator and three
Pauli operators proportional to the spin components along three orthogonal spatial directions. We describe the 
properties of these operators and of their eigenstates, using the convenient representation of the Bloch 
sphere.This representation is useful to describe any system evolving in a two-dimension Hilbert space like the 
qubits in quantum information. We will extensively use this representation in subsequent lectures.   

±! / 2

The value of the spin of particles is related to the statistics they obey to (bosons or fermions). We analyse this
connexion by discussing the symmetrization postulate of quantum physics and we describe how it accounts for 
some important properties of bosons and fermions.
Finally, we briefly present the relativistic Dirac equation, which gave a theoretical foundation to the existence 
of the electron spin, predicted the positron and introduced the concepts of quantum field theory. 

This lecture is devoted to the quantum description of the angular momentum (AM) and of the spin of quantum 
particles (electrons and nuclei). Classically the angular momentum measures the amount of rotation stored in a 
body, constituting the rotational analog of the linear momentum. In quantum physics the orbital AM associated
to the spatial motion of a particle is the cross product of its position and momentum operators. The x,y and 
z components of the AM do not commute between themselves but they do commute with the square L2 of  the 
AM which has a discrete spectrum of eigenvalues l(l+1)h2, with l=0,1,2…. For each l value, the  Li components 
(i=x,y,z) have a discrete spectrum varying by steps of h from –l h to +l h. The component of the AM along a 
spatial axis is the generator of the rotations around this axis. 

!
L
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Orbital angular momentum

!
L = !r × !p = m!r × !v

!r

!p

In classical non-relativistic mechanics, the 
angular momentum of a body orbiting in a 

spherically symmetrical potential is
invariant: 

The second Kepler law states that the 
area A swept in a unit time by the radial 

vector joining the sun to a planet is a 
constant

!
L = r ⋅ psinθ

In quantum mechanics, the angular momentum is a vector operator:

Lx = YPz − ZPy
Ly = ZPx − XPz
Lz = XPy −YPx

Commutation rules: Lx ,Ly⎡⎣ ⎤⎦ = i!Lz ; Ly ,Lz⎡⎣ ⎤⎦ = i!Lx ; Lz ,Lx⎡⎣ ⎤⎦ = i!Ly

L2 = Lx
2 + Ly

2 + Lz
2 Li ,L

2⎡⎣ ⎤⎦ = 0 (i = x, y, z)

rvsinθdt =
L dt
m

= AdtAngular Momentum in classical physics: astronomical example

q

!
L

!
L

Spectrum of orbital angular momentum
Since L2 and Lz commute, 
there is a common basis 
of eigenstates for these
two operators. An l state 

has a 2l+1 degeneracy
(here l =3)

Eigenstates of angular momentum
(spherical coordinate representation):

l = 2 (d states)

l = 0 (s state)

l = 1 ( p states)

r

Spherical
harmonics

r,θ ,ϕ ψ l
m = R(r)Yl

m(θ ,ϕ )
Arbitrary

function of r

L2 l,m = l(l +1)!2 l,m ; l = 0,1,2.....

Lz l,m = m! l,m ; − l ≤ m ≤ l

Classically, m
corresponds to 
the discrete

projections of L 
on Oz axis 

(spatial 
quantization)



02/03/2022

3

The hydrogen spectrum in non-relativistic quantum 
mechanics

H ,Li⎡⎣ ⎤⎦ = H ,L2⎡⎣ ⎤⎦ = 0

There is a common basis of eigenstates of H, L2

and Lz:

H n,l,m = En n,l,m ; En = −
Ry
n2

L2 n,l,m = l(l +1)!2 n,l,m ; l = 0,1,2....n−1

Lz n,l,m = m! n,l,m : − l ≤ m ≤ l

r,θ ,ϕ n,l,m = Rn(r)Yl
m(θ ,ϕ )

n=1

n=2

n=3
n=4

l = 0
m = 0

l = 1
m = −1,0,+1

l = 2
−2 ≤ m ≤ 2

l = 3
−3≤ m ≤ 3

Orbital degeneracy of nth manifold: 

dn = 1+ 3+ ....+ 2n−1= n
2

H = P
2

2m
− e

2

r

Lyman
lines

Balmer 
lines

The spectral 
lines of Hydrogen

are grouped in 
series:  Lyman, 
Balmer etc…

Angular momentum and rotations
The operator: RZ (α ) = exp(−iαLz / !)
rotates the position eigenstate of a particle
in real space by the angle a around Oz: 

RZ (α ) r,θ ,ϕ = r,θ ,ϕ +α

We start by demonstrating the identity in the 
spherical coordinate representation: 

x = r sinθ cosϕ ; y = r sinθ sinϕ ;z = r cosθ

This relation results from the definition of 
spherical coordinates:

: ∂
∂ϕ

= ∂
∂x

∂x
∂ϕ

+ ∂
∂y

∂y
∂ϕ

= − y ∂
∂x

+ x ∂
∂y

= i
!
Lz

We then express that the l,m spherical harmonic
Ylm is an eigenstate of Lz with eigenvalue m: 

LzYl
m = !

i
∂
∂ϕ
Yl
m = m!Yl

m

which shows that the j dependance of Ylm is eimj :

Yl
m(θ ,ϕ ) = eimϕ f (r,θ )

From the definition of Rz(a) we then get : 
RZ (α )Yl

m = eim(ϕ−α ) f (r,θ )

→ RZ (α )Yl
m(r,θ ,ϕ ) = Yl

m(r,θ ,ϕ −α )

r,θ ,ϕ RZ (α ) l,m = r,θ ,ϕ −α lm
which also writes: 

and, by hermitian conjugation: 

l,m Rz
†(α ) r,θ ,ϕ = lm r,θ ,ϕ −α

and finally noting that and 
changing a in –a we get the announced result.  

Rz
†(α ) = Rz (−α )

Lz = (! / i)∂/ ∂ϕ

More generally, the operator
associated to the rotation of angle a 
around the direction defined by vector
u is: 

R!u (α ) = e
− iα !u .

!
L/"

!u
x y

z
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Recapitulation: Unitary operators describing translations in 
position and momentum, rotations and time evolution

Translation in space:

Momentum translation:

Rotation in space

Time evolution: 

T!r0 = exp(−i
!r0
!
P / ") ; T!r0

!r = !r + !r0 ; T!r0
†= T− !r0 = T!r0

−1

T!p0 = exp(i
!p0
!
R / ") ; T

!p0

!p = !p + !p0 ; T!p0
† = T− !p0 = T!p0

−1

R!u ,α = exp(−iα !u.
!
L) ; R!u ,α

!r = R(!r ) ; R† !u ,α = R!u ,−α = R!u ,α
−1

U (Δt) = exp(−iΔtH / !) ; U (Δt)ψ (t) = ψ (t + Δt) ; U †(Δt) =U (−Δt) =U −1(Δt)

These four operators are unitary: their hermitian conjugate realizes the inverse operation

Rotated Position 

Spin angular momentum
In addition to the orbital momentum described above, 
elementary particles have an intrinsic angular momentum
or spin. It is the case of the electron and of the proton. 
Their spins can classically be viewed as the angular
momentum associated to the spinning of the particles
around an axis passing through them (in analogy with the 
diurnal rotation of the Earth and Sun). The spin is
however a quantum-relativistic concept and the classical
analogy must be used with caution. The spin S of the 
electron and of the proton is a vector angular momentum
observable with 3 components Si (i=x,y,z): 

!
S (Sx ,Sy ,Sz )

It obeys the same commutation relations than the orbital 
AM: 

Si ,S j⎡⎣ ⎤⎦ = i!ε ijkSk ; Si, ,S
2⎡⎣ ⎤⎦ = 0

S2 and Sz commuting, these two observable 
share a common eigenbasis. 

S ,ms (S = 1
2
; ms = ± 1

2
)

S 2 S ,ms = S(S +1)!2 S ,ms = 3!
2

4
S ,ms

with the eigenvalues equations: 

Contrary to the orbital AM which is an 
integer, the electron spin has a half-
integer value. It evolves in a Hilbert space
of dimension d =2S+1=2. On next slide, we
introduce a convenient formalism to 
describe the states and the operators in 
this Hilbert space.   

Classical description 
of Hydrogen atom
with the intrinsic
spins of electron

and proton

(i, j,k = x, y, z; ε ijk = ± for even / odd

permutations of indices x, y, z.

Sz S ,mS = mS S ,mS
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Spin ½ as a generic model of a two-level quantum system 
A spin ½ evolves in a two dimension Hilbert space which can be represented in the basis [|+>z,|->z] of 
the Sz eigenstates (eigenvalues ; so called ’’spin up’’ and ‘’spin down’’ states). It is a generic model 
for a quantum system whose all states save two can be ignored in a specific situation (atom evolving
between a ground and an excited state for example). To describe these systems, it is convenient to 
introduce the Pauli dimensionless operators proportional to the components of a spin ½:  

±! / 2

Si =
!σ i

2
; σ i ,σ j

⎡⎣ ⎤⎦ = 2iε ijkσ k

σ x =
0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥ ; σ y =

0 −i
i 0

⎡

⎣
⎢

⎤

⎦
⎥ ; σ z =

1 0
0 −1

⎡

⎣
⎢

⎤

⎦
⎥

which write in a matrix form in the sz eigenstates basis:: 

The si’s are represented by Hermitian and unitary
traceless matrices whose square is the identity operator:  

σ i
2 = 1 0

0 1
⎡

⎣
⎢

⎤

⎦
⎥ = I

One often replaces  the spin up and 
down notation by the binary one (0,1), 
more usual in quantum information:   

0 = +
z
; 1 = −

z

σ x ± x
= ± 1

2
+

z
± −

z( ) = ± 1
2
0 ± 1( )

σ y ± y
= ± 1

2
+

z
± i −

z( ) = ± 1
2
0 ± i 1( )

The 3 Pauli operators have the same (+1,-1) 
spectrum, Their eigenstates are given by:: 

σ z ± z
= ± ±

z
or σ z 0 = + 0 ;σ z 1 = − 1

Properties of Pauli operators

Pauli operators are traceless, Hermitian and unitary: σ i =σ i
† =σ i

−1 ; σ i
2 = I

The commutator of two of them is equal to 2i times the 
third, with the + or – sign depending on the permutation 
order ( commutation rules of angular momentum): 

σ i ,σ j
⎡⎣ ⎤⎦ = 2iε ijkσ k

The product of two Pauli operators is equal to the 
third one with a +i or –i multiplication:

σ iσ j = iε ijkσ k

By linear combination of  si and isj, we get
an operator which flips the spin in the k 
direction:

σ ± =
1
2
σ x ± iσ y( ) ; σ + = + − = 0 1

0 0
; σ − = − + = 0 0

1 0

Any Hermitian operator of trace 1 acting on a spin is a linear combination with real coefficients 
of the Pauli operators and identity operator (see Lecture 7): 

OS =
1
2
I + piσ i

i
∑

Tr σ i( ) = 0
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Rz (α ) = e
− iαSz /! = e− iασ z /2

= 1−
iασ z

2
−α 2 σ z

2

22 × 2!
+ iα 3 σ z

3

23 × 3!
+ ....

= cos α
2

⎛
⎝⎜

⎞
⎠⎟
I − isin α

2
⎛
⎝⎜

⎞
⎠⎟
σ z

= e− iα /2 0
0 eiα /2

Rz (α ) + x
= 1
2
Rz (α ) +

z
+ −

z
⎡⎣ ⎤⎦

= 1
2
e− iα /2 +

z
+ eiα /2 −

z
⎡⎣ ⎤⎦

Spin manipulations: Rotation around Oz
Develop the operator realizing
a rotation by angle a around
Oz, using the Pauli operator
identities: 

σ i
2n = I ;σ i

2n+1 =σ i

Perform this rotation on state |+>x (spin pointing along Ox): 

Analyse results for 3 values of a: 

α = π
2
: Rz (

π
2
) +

x
= 1
2
e− iπ /4 +

z
+ eiπ /4 −

z
⎡⎣ ⎤⎦

= e
− iπ /4

2
+

z
+ i −

z
⎡⎣ ⎤⎦ = e

− iπ /4 +
y

p/2 rotation around Oz brings spin pointing along Oy

α = π : Rz (π ) + x
= −i
2

+
z
− −

z
⎡⎣ ⎤⎦ = −i −

x

p rotation around Oz brings spin pointing along -Ox

α = 2π : Rz (2π ) + x
= − +

x
After 2p rotation, spin comes back to initial 
state with a sign change (p-phase shift 
exploited in quantum information ; see later)

x

y

z

a

Rotate a spin « up » along Oz to get it
pointing in direction of polar angles q,j

Rz (ϕ )Ry (θ ) = cos
ϕ
2

⎛
⎝⎜

⎞
⎠⎟
I − isin ϕ

2
⎛
⎝⎜

⎞
⎠⎟
σ z

⎡

⎣
⎢

⎤

⎦
⎥ cos

θ
2

⎛
⎝⎜

⎞
⎠⎟
I − isin θ

2
⎛
⎝⎜

⎞
⎠⎟
σ y

⎡

⎣
⎢

⎤

⎦
⎥

= e− iϕ /2

eiϕ /2
×
cos

θ
2

−sinθ
2

sin
θ
2

−cosθ
2

=
e− iϕ /2 cosθ

2
−e− iϕ /2 sinθ

2

eiϕ /2 sinθ
2

−eiϕ /2 cosθ
2

Rz (ϕ )Ry (θ ) + z
= e− iϕ /2 cosθ

2
+

z
+ eiϕ /2 sinθ

2
−

z
= +

θ ,ϕ

x

y

z

j

q Apply rotation around Oy by angle q, then rotation by angle j
around Oz. Order of rotations matter (operators do not commute). 
The rotations must be applied to the kets from right to left:  
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The Bloch sphere representation of a two-level system

σ u = cosθσ z + sinθ cosϕσ x + sinθ sinϕσ y =
cosθ sinθe− iϕ

sinθeiϕ −cosθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

The component along an arbitrary direction u (of polar angles q,j) of the pseudo spin is
proportional to the linear superposition su of the si matrices:

The eigenvalues of su are  +1 and -1 and the eigenstates noted |0>qj and |1>qj are linear
superpositions of |0> and |1> (see previous page): 

y

q

j

z

x

u
|0>

|1>

|0>x
|0>y

When u is rotated in space, |0>qj explores the entire Hilbert space
of the pseudo-spin.  The tip of this vector belongs to a sphere of 
radius unity called the Bloch sphere. The Hilbert space is
« mirrored » onto this sphere, each point representing a possible 
superposition of |0> and |1>. The north and south poles mirror the 
|0> and |1> basis states. The eigenstates of sx and sy are along the 
equator. Two orthogonal states are at antipodes of the sphere. 

σ u 0 θ ,ϕ
= e− iϕ /2 cosθ

2
0 + eiϕ /2 sinθ

2
1

σ u 1 θ ,ϕ
= −e− iϕ /2 sinθ

2
0 + eiϕ /2 cosθ

2
1

Tensor product of Hilbert spaces: quantum description of 
two spins

The quantum state of a system made of two parts 
A and B evolves in a global Hilbert space:

HAB = HA⊗ HB

called the tensor product of HA and HB. If |i>A and 
|j>B are bases in HA and HB, a basis in HAB is given by 
the tensor products:

representing the combined system in the state 
where A is in the state |i>A and B in |j>B:

i
A
⊗ j

B

Measuring the observable OA on A without
observing B projects the system on the eigenstates
of: OA⊗ IB
tensor product of OA and the unity operator IB in 
HB. Acting on different systems, the operators
OA⊗ IB and OB ⊗ I A

If A and B interact, products of the form.                                       

commute with each other. 

describe the interaction. Since the 
tensor product is obviously
commutative, we will in the following
skip the      symbol and write tensor
products as ordinary multiplications. 

OA⊗OB

⊗

We can now apply these definitions to 
an ensemble of two spins noted A and 
B: Let us define in the tensor product
space the 4 state basis: 

+
A
+

B
= +,+ AB ; −

A
−

B
= −,− AB

+
A
−

B
= +,− AB ; −

A
+

B
= −,+ AB

We will now construct another basis 
in the product Hilbert space which
has interesting physical properties. 
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Additioning two spins ½: the total spin is 1 or 0
By linear combination we construct another
orthonormalized basis in the space of the spins

+,+ 1
2

+,− + −,+( ) −,−

1
2

+,− − −,+( )
The three states of the first line are invariant by 
permutation of the two spin states (symmetrical
states) while the state of the second line changes 
sign upon permutation (antisymmetrical state). 

Consider now the matrix representing the total 
spin operator SA +SB in the above basis. It is
obvious that it cannot have matrix elements
between states of different permutation 
symmetry. The action of SA+SB on a symmetrical
state produces a symmetrical image which is
orthogonal to the antisymmetrical state and 
reciprocally.  

Hence, the global spin operator breaks 
into a 3x3 matrix in the symmetrical
subspace and into a 1 diagonal element in 
the antisymmetrical state: 

0
0 0 0

0
0

antisymmetric

Moreover we have obviously: 

σ zA +σ zB

2
⎛
⎝⎜

⎞
⎠⎟
±,± = ± ±,± ;

σ zA +σ zB

2
⎛
⎝⎜

⎞
⎠⎟

+,− + −,+( ) = 0
σ zA +σ zB

2
⎛
⎝⎜

⎞
⎠⎟

+,− − −,+( ) = 0

Subspace 3x3 
of total Spin 1

State of spin 0

Symmetric

Is a quantum state « real »?
In classical physics, a single  object can be fabricated with a blueprint by Alice. If she gives it to 
Bob, he will be able to describe it in details. If he has the required tools, he will also be a able to 
make an arbitrary number of copies of the object.  If Alice distributes copies of the object to 
independent observers, they will all agree about what they see. All these features are obvious rules
of the classical reality.
These rules do not apply in the quantum world. If 
Alice decides to prepare a quantum state, she will be
able to do it with an apparatus designed to measure
an observable admitting this state as an eigenstate . 
For a spin, she will simply measure the relevant su
operator and thus project an arbitrary state into
any superposition she wishes to obtain:

But if she gives a single particle prepared in this
state to Bob, he will not be able to determine the  
|0> and |1> amplitudes. He may get some information 
by measuring one pseudo-spin component, but this
will erase all further information about the state.  

In order to get complete information, Bob 
must receive a large number of copies of the 
state.  He divides the sample into subsets and  
measures repeatedly non-commuting
observables sx,sy and sz on these subsets, 
obtaining the mean results yielding q and j:  

ψ σ z ψ = cosθ ; ψ σ x ψ = sinθ cosϕ ;

ψ σ y ψ = sinθ sinϕ
This method of state reconstruction is called
quantum state tomography:                              

A quantum state is an ‘’identity’’ card known
only by the « preparer ». To read this card, an 
observer must have access to a large number
of copies and perform a statistical analysis.

e− iϕ /2 cosθ
2
0 + eiϕ /2 sinθ

2
1
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The impossibility to determine the unknown state of a quantum system admits as a corollary the 
« no-cloning » theorem. Let us demonstrate the impossibility to clone an unknown quantum state by 
reasoning on spin-like systems. 

A cloning machine would perform a unitary operation U transforming the tensor product of an 
unknown state |y>A and a ‘’neutral’’ state |0>B (the ‘’blank sheet’’ on which A is to be copied) into
|y>A|y>B. Using the linearity of quantum physics this can be written in two different ways:  

These two expressions being different (no cross terms in the second one, different amplitudes for 
|0>|0> and |1>|1>) there is an obvious contradiction which shows that quantum cloning is impossible. 

‘’No cloning’’ theorem

Or:
aU 0

A
0

B
+ bU 1

A
0

B
= a 0

A
0

B
+ b 1

A
1
B

U a | 0 >A +b |1>A( ) 0 B
= a | 0 >A +b |1>A( ) a | 0 >B +b |1>B( )

If perfect cloning were possible, one could make an arbitrary number of copies of an unknown state 
and by performing measurements of non-commuting observables on these copies, one could get a 
complete information on the state, in contradiction with the fundamental property mentionned inthe
previous page. Perfect cloning would also make possible superluminal communications (see Lecture 7)

A classical object can
be objectively observed

and copied

The wave function or the 
quantum state of a single 

quantum object whose
preparation is unknown cannot

be determined nor copied

?

Cloning
forbiden
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What is the wave function or the quantum state after all? 
A mathematical concept useful for calculations which apply to phenomena involving a large number of 
particles? The wave function makes it possible to compute quantum mechanical averages in systems
in which the strange discontinuities predicted by the quantum rules (quantum jumps, state collapse) 
are not directly observable. Most physicists since the beginning of the 1930’s have stopped asking
themselves interpretation questions and have used quantum rules in a pragmatic way to understand
the properties of light and matter with great success. This is the « shut up and calculate » era.

On the other hand, the quantum state was a concept applied in thought experiments to describe
hypothetical phenomena at the single particle level, which revealed the strange quantum logic
(quantum jump, wave function collapse, entanglement)?. But what reality do these experiments
describe? Schrödinger and Einstein were sceptical…  

Experiments of the last forty years, notably made possible by lasers, have proven
Schrödinger wrong (see next lectures!)

« We never experiment with just one electron or 
atom or (small) molecule. In thought experiments we
sometimes assume we do; this inevitably entails
ridiculous consequences » (Schrödinger -1952) 

Erwin 
Schrödinger

Dealing with identical particles in quantum theory
We have recalled (Lecture 4) how the question of dealing with fundamentally identical particles
has been raised early in quantum physics, even before the discovery of the mathematical
formalism and the introduction of the concept of wave function and quantum states (Bose-Einstein 
condensation for Bosons and Pauli exclusion principle for Fermions). In the early days, the question 
focused on the indistinguishability of identical particles and the consequences it entailed for the 
calculation of the system’s entropy at low temperatures. 
As soon as the quantum theory was developed another deep question raised by the treatment of 
ensemble of identical particles emerged. The superposition principle introduces an ambiguity in 
the description of the quantum state of an ensemble of particles which needs to be solved for the 
consistency of the theory. The problem can be recognized for a situation as simple as the collision 
of two identical particles, for exemple two electrons whose spins are oriented in the same
direction.  

!pi − !pi

− !p f

!p f

Before
collision

During
collision

After
collision

How to describe initial state?
!pi ,−
!pi − !pi ,

!pi
a !pi ,−

!pi + b − !pi ,
!pi

or

or
?

Exchange degeneracy leading to 
ambiguity in theoretical predictions
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Simple example of ambiguity raised by exchange 
degeneracy and symmetrization postulate

Consider two identical particles evolving in a two
dimension Hilbert space, with their pseudo spins 
oriented in opposite directions, each having a 
50% probabilty to point up and down along the 
quantization direction Oz. We can a priori write
the state of the system as:

ψ (α ) = 1
2

+,− + eiα −,+( )
with an arbitrary phase a. This « exchange 
degeneracy » is not acceptable since it leads to 
predictions which depend on the choice of a. 
Suppose for instance that we measure the 
square of the total spin (s1 +s2)2. Its
expectation value is:  

ψ (α ) !σ 1 +
!σ 2( )2 ψ (α ) =

ψ (α ) σ 1
2 +σ 2

2 + 2σ 1zσ 2z +σ 1+σ 2− +σ 1−σ 2+( )ψ (α )
= 4(1+ cosα )

Depending on a, we get thus prediction for this
expectation value varying from 0 to 8. To avoid
this ambiguity, a «symmetrization postulate » is
added to the quantum rules: The phase a can
only take the values 0 or p. In the first case, the 
state of the two particles is symmetrical by 
exchange of the two particles. In the second 
case, it is antisymmetrical. This rule extends to 
more than two particles: the state of a system 
made of identical particles must either remain
invariant or change sign by exchange of any
couple of particles. In the first case the 
particles are bosons, in the second case 
fermions. This postulate leads to physical
properties of fermions and bosons confirming
those which had been obtained from statistical
arguments in the old theory of quanta: the 
gregarious character of bosons and the 
exclusion principle for fermions.   

Fermions and Bosons wave function: the symmetrization
postulate

(a) (b) (c)

Collision of two identical particles in their rest
frame: they fly towards each other with opposite 
velocities (a), their wave packets overlap (b) and 
they fly away in directions q and p-q (c)

pi -pi
pf

-pf

pi -pi

pf

-pf

pi -pi

pf

-pf

q

The two interfering amplitudes in the collision 
between identical particles

ψ
i
= 1
2
pi ,− pi + ε − pi , pi( )

f
ψ U ψ

i
= p f ,− p f U pi ,− pi + ε − p f , p f U pi ,− pi

p f ,− p f U pi ,− pi − p f , p f U pi ,− pi

The system state is either symmetrical by 
permutation of the two particle (e=+1, 
bosons) or antisymmetrical (e=-1, fermions)

The  amplitude for the scattering in the directions    
q, p-q is the sum of two interfering terms (U is the 
unitary evolution operator symmetrical by particle
exchange):  
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Consequences of the antisymmetrization for Fermions

pi -pi

pf

-pf

pi -pi

pf

-pf

q -
p f ,− p f U pi ,− pi = f (θ ) − p f , p f U pi ,− pi = f (π −θ ) The two amplitudes interfere with the minus 

sign: at right angle ( q=p/2) the collisional
cross section vanishes. This is the case only if 
there is no way to find out which trajectory
was followed by the system. The spins of the 
fermions should be polarized in the same
direction. If they have opposite spins, the two
final states could be distinguished and the 
interference disappears. The fermions then
have a finite probability to be scattered at 
right angle.

For collisions at very low temperatures (de Broglie wavelength larger
than the range of the collision potential), the scattering is isotropic, 
the outgoing particles flying away in a spherically symmetrical s-wave: 
f(q) is then q independent and the scattering wave vanishes altogether, 
because the two fermions cannot end-up in the same final state (Pauli 
exclusion principle). Ultracold polarized fermions fly by each other
without interacting. This has important consequences for the 
manipulation of ultracold Fermi gases.  

Antisymmetrization of electron states in atoms: Hund’s rule
The antisymmetrization rule for electrons (the global electronic quantum state must change sign for 
any permutation of couples of electrons) forces them to be in different one-particle states (Pauli 
exclusion principle). It has also more subtle consequences related to the spin. If two electrons have 
their spin aligned in same direction, they have an energy smaller than if the electrons have opposite 
spins (Hund rule). This looks like a magnetic interaction between the electron magnetic moments. It 
is however an electrostatic interaction orders of magnitude larger. 
Consider two electrons occupying orbitals j and y. Their global wave function must be
antisymmetrical, which allows two possibilities: either their orbital wave function is antisymmetrical
and their spin state is symmetrical or the opposite.  
The two electron spin Hilbert space admits a four 
state basis, three of which (corresponding to a total 
spin 1) being symmetrical by electron exchange and 
one (total spin =0) being antisymmetrical:  

S
0
= 1
2

+
1
−

2
− −

1
+

2
⎡⎣ ⎤⎦

S
1
= 1
2

+
1
−

2
+ −

1
+

2
⎡⎣ ⎤⎦ ; +

1
+

2
; −

1
−

2

The  state of the two electrons is thus: 

Ψ
1
= 1
2

ϕ
1
ψ

2
− ψ

1
ϕ

2
⎡⎣ ⎤⎦⊗ S

1

ψ 0 = 1
2

ϕ
1
ψ

2
+ ψ

1
ϕ

2
⎡⎣ ⎤⎦⊗ S

0

In the triplet spin 1 states |Y>1, the two electrons
cannot be at the same point because the orbital wave
function vanishes. There is thus less electrostatic
repulsion than in the singlet |Y>0 state: The system 
minimizes its energy by aligning its spins. This is the 
basic explanation for ferromagnetism.  

or
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Stimulated scattering of bosons

pi

pf

N
U

ψ
i
= 1

N +1
pi , p f , p f! p f + p f , pi , p f! p f +! p f , p f , p f! pi⎡

⎣
⎤
⎦

ψ
f
= p f , p f

, p f! p f

f
ψ U ψ

i
= N +1 p f U pi

Consider a scattering process in which a boson with momentum pi impinges on an external
potential weak enough so that the probability amplitude for the particle to be scattered
spontaneously to a final momentum pf is small compared to 1                         . If N bosons are 
already present in the final state pf, the amplitude for the (N+1)th particle to end-up in this
state is multiplied by          . This bosonic amplification is due to the symmetrization postulate
which requires that the N+1 bosonic state be invariant by all particle permutations. It recalls
the photon amplification process of stimulated emission discovered by Einstein in 1916. This 
amplification plays a role in the phenomenon of Bose Einstein condensation:  the probability
that a particle in the saturated gas phase will fall in the condensed phase is proportional to the 
number of bosons already in that phase. The more particle are condensed, the faster new 
particles will join. This is an avalanche process. 

(U fi ≪1;Uii ≈1)

N +1

Elementary and composite bosons and fermions
The fundamental ‘’indistinguishability’’ of particles of the same species is an essential feature of quantum 
physics, which was recongnized even before the maths of quantum physics were discovered. As soon as you
associate them with waves, it becomes inconsistent to assign a numerical label to electrons or atoms because it
becomes fundamentally impossible to distinguish them by their trajectories. The classical counting is thus a 
mathematical procedure which must be erased by the symmetrization or antisymmetrization operation. In order
to avoid this somewhat cumbersome trick, a formalism of « second quantization » has been developed in which
the particles in each quantum state are just represented by their occupation number, which is increased or 
decreased by creation or annihilation operators. This formalism is particularly useful for photons. The particles
appear in general as quantum excitations of their respective fields.    
The elementary buiding blocks of matter (electrons, quarks and their « cousins » of the standard model) are 
fermions. The particles which carry the interactions between them (photons, W and Z carriers of the weak
force, gluons and gravitons) are bosons. The fermions have half-integer spins and the bosons integer ones. 
Besides elementary particles, the bound systems (protons, neutrons made of three quarks, nuclei made of 
protons and neutrons, atoms made of nuclei and electrons, molecules…) are composite bosons or fermions, 
depending on the parity of the total number of fundamental fermions which constitute them. This is a 
consequence of the symmetrization rule. The permutation operator acting on a number of bound fermions will
multiply their state by +1 or -1 depending upon the parity of this number. The rules of summation of angular
momentum entails that composite fermions have half integer spins and composite bosons integer spins.
According to these rules, protons and neutrons (3 bound quarks) are fermions, the hydrogen atom (1 proton + 1 
electron) is a boson as well as the Helium 4 isotope (2 protons, 2 neutrons and 2 electron). Helium 3 is a fermion. 
We will see that alkali atoms (odd number of electrons) are bosons if they have an odd number of nucleons and 
fermions if this number is even. In superconducting materials, « Cooper pairs » of electrons behave as bosons. 
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The theoretical origin of the electron spin 
and the positron: The Dirac equation

 iγ
µ ∂µψ = mcψ

Paul Dirac 
(in 1928)

The Schrödinger equation is non-relativistic and thus does not apply to fast moving
particles. Marrying the concepts of special relativity with quantum mechanics, Dirac 
established in 1928 his famous equation, which for a free electron in the absence 
of electromagnetic fields writes: 

This equation, which takes a very simple and elegant form, involves three parameters: the Planck 
constant, the speed of light c and the rest mass m of the electron. The four symbols gµ (µ=0,1,2,3) 
are 4x4 matrices (called Dirac matrices) and represents the partial derivatives with respect to 
time ( ) and space (                   ). The summation over µ is implicit. This equation, invariant under
Lorentz transformations,  describes the electron by a « Dirac spinor » whose four components are 
position dependent wave functions. 

We present here the arguments which have led Dirac to this equation and discuss its physical
content: existence of the electron spin and of negative energy states, prediction of the positron
and premices of quantum field theories

∂µ
∂0 ∂1,∂2 ,∂3

The requirements of a relativistic quantum mechanical
equation for the electron (free particle) 

1. The equation must involve space and time in a symmetrical way (same order of derivatives) 
which is not the case of Schrödinger’s equation which is first order in time and second order
in spatial derivatives.

2. It should be first order in time derivative (and thus in space derivatives) so that the 
system’s evolution is fully determined by the initial state

3. It should for a free electron satisfy the conservation of the norm of the relativistic
energy-momentum quadrivector:

E2 − p2c2 −m2c4 = 0

After identification of E with ihd/dt and pi (i=x,y,z) with –ihd/dxi, we must thus get a 
differential equation linear in time and spatial derivatives whose solution Y is an eigenstate with
eigenvalue 0 of the above quadratic quantity. The general solution for E writes:  

E = ± p2c2 +m2c4
and we can thus expect that the solution will involve negative energy states whose interpretation
will need to be precised.
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Dirac matrices and space-time metrics of special relativity

E2 − p2c2 −m2c4 = E +
!α !pc + βmc2( ) E −

!α !pc − βmc2( )

We factorize the quadratic invariant as the product of two linear expressions, with the  ai and b
being matrices satisfyng anticommutation relations: 

α iα j +α jα i = 2δ ij I (i, j = x, y, z) α iβ + βα i = 0 β 2 = I

The quantum state y which satisfies the 
equation:   

E −
!α !pc − βmc2( )Ψ = 0

obviously satisfies also the relativistic invariant 
second order equation:

E2 − p2c2 −m2c4( )Ψ = 0

i! ∂
∂t

+ i!c
"α .
!
∇− βmc2

⎛
⎝⎜

⎞
⎠⎟
Ψ = 0

Substituting to E and p the corresponding
time and space derivatives, we get the  
differential equation:  

We will finally exhibit more clearly the 
symmetry beween space and time by 
redefining the Dirac matrices (see
next slide). 

The Dirac equation in symmetric form

Let us make the notation change:

∂0=
1
c
∂
∂t
; ∂ j=

∂
∂x j

The Dirac equation then writes: 

We then multiply at left by the matrix b and 
define the new set of matrices gµ (µ=0,1,2,3) as: 

γ 0 = β ;γ j = βα j

which yields Dirac equation in symmetric form
(summation on repeated indices):

i! ∂0+ α j ∂ j
j
∑

⎛

⎝⎜
⎞

⎠⎟
− βmc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ψ = 0

i!γ µ ∂µ−mc⎡⎣ ⎤⎦Ψ = 0

The 4x4 Dirac matrices obey anticommutation
relations: 

γ 0γ i + γ iγ 0 =α i + βα iβ = 0

γ iγ j + γ jγ i = βα iβα j + βα jβα i

= −α iα j −α jα i = −2δ ij

γ 0γ 0 + γ 0γ 0 = 2I

γ µγ ν + γ νγ µ = 2gµν I ; gµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

which summarize as: 

We recognize in the  anticommutator twice the tensor
metrics gµn of special relativity. Note that the Dirac 
equation is sometimes simply written in the system unit 
where c=h=1 as: 

iγ µ ∂µ−m⎡⎣ ⎤⎦Ψ = 0
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Physical content of Dirac’s equation (I)
The 4x4 Dirac matrices can be expressed in 
terms of 2x2 unity and Pauli matrices as:  

γ 0 = I 0
0 − I

;γ i =
0 σ i

−σ i 0
It is easy to show from the properties of the Pauli 
operators that this representation of the g matrices 
satisfy the required anticommutation relations. The 
Dirac wave function Y is a  4-component « spinor » 
which we write as: 

Ψ =
Ψ1

Ψ2

where y1 and y2 are two-component 
functions

We now show that at the non relativistic limit, |y1| 
is much larger than |y2|for positive energy states. 
It is thus natural to identify y1 with the two
component spinor of the Pauli theory described in 
the first part of this lecture. 

(E −mc2 )I cσ i p
i

−cσ i p
i −(E +mc2 )I

Ψ1

Ψ2

= 0

With these notations, we easily get: 

which is expanded as two coupled equations: 

Ψ2 = −
cσ i p

i

E +mc2
Ψ1This allows to express y2 as:

and we find that for positive energy states 
at the non relativistic limit (E = mc2+p2/2m):

Ψ2

Ψ1

= pc
E +mc2

∼
mvc
2mc2

= v
2c
≪1

Dirac’s equation also predicts negative energy
states (E= -mc2-p2/2m at the non-relativistic
limit) whose physical meaning| is discussed
below. For these states it is easy to show that
|y2/y1|>>1.

E −mc2( )Ψ1 + cσ i p
iΨ2 = 0 ; − E +mc2( )Ψ2 − cσ i p

iΨ1 = 0

Physical content of Dirac’s equation (II)
From the previous discussion, it is natural to identify
y1 as the spinor of Pauli’s spin theory. In this sense, 
Dirac’s equation provides the theoretical justification 
of the Pauli spin model. It remains to understand the 
properties of the negative energy states which are 
represented by spinors in which the last two
components y2 are dominant. The energy spetrum of 
an electron is represented by a diagram with a 
positive energy band above +mc2 and a negative one 
below –mc2, separated by a 2mc2 forbidden gap:    

+mc2

-mc2

A positive energy electron cannot spontaneously
fall in a negative energy state if all these states 
are filled (Pauli exclusion principle). Dirac 
postulates that the vacuum is a Fermi sea full of 
negative energy electrons. Physical effects should
be measured as departure from this vacuum state. 
Consider the opposite situation: a photon of energy
>2 mc2 extracts from the Fermi sea a negative
energy electron in a kind of photo-electric effect. 
A hole is left in the Fermi sea and a positive energy
electron is created. The hole, a lack of negative
energy, is a positive energy excitation of the Fermi 
sea, a positron. Since a negative elementary charge 
has disappeared, the positron-hole has a positive 
charge opposite to that of the electron (and the 
same mass). Dirac’s equation thus predicts that
energetic photons can create electron-positron 
pairs from vacuum. Note that momentum-energy
conservation requires a massive body in vicinity (e.g
an atomic nucleus to absorb the recoil).

Positron 
(hole in 
Fermi sea)

electron

0
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The importance of Dirac’s equation

Dirac equation has  predicted the existence of the positron discovered in 1932 by Anderson.

Dirac’s equation explains the electron spin as an intrinsic relativistic effect. When magnetic field
contribution is added to the equation, it predicts that the gyromagnetic ratio of the electron spin 
(ratio between its magnetic moment and the angular momentum) is twice that of the electron
orbital momentum (see next lectures) 

It stresses the fact that a relativistic quantum theory cannot be restricted to one-particle. The 
mass-energy equivalence of relativity combined with the principles allowing for quantum 
fluctuations makes possible the creation of matter out of vacuum. Particles are quanta of their
fields. They can be created or annihilated like photons if enough energy is available (processes
essential in high energy physics)

If one includes the Coulomb potential in the equation, it yields the relativistic spectrum of Hydrogen
including the fine structure due to the magnetic interaction between the orbital and spin variables. 

For sake of simplicity, we have restricted ourselves to 
discuss the Dirac equation of a free electron (no 
electromagnetic field applied). In the presence of a 
static Coulomb field or an e-m field described by a 
quadripotential Aµ, the Dirac equation becomes: 

This equation accounts in particular for the 
magnetic properties of the electron
mentionned above. Note that the vacuum 
fluctuation of the e-m field are responsible for 
the ‘’Lamb shift’’ which adds a supplementary
correction to the Hydrogen spectrum as given by 
Dirac’s equation ( next lectures)  γ µ i!∂µ− qAµ( )−mc⎡

⎣
⎤
⎦Ψ = 0

Conclusion of Lecture 6
The spin of quantum particles evolving in a two dimension Hilbert space is a simple model for the 
description of a large variety of quantum systems whose quantum states can be described as 
superposition of two components (ground and excited state of an atom interacting with light, 
magnetic moments of nuclei in nuclear magnetic resonance experiments, two state qubits in 
quantum information science etc…). The Pauli matrices and Bloch sphere representation will be
very convenient to describe these situations in future lectures. 

We will use the spin formalism in lecture 7 to analyse the concept of quantum entanglement and 
describe how this concept is related to the notion of complementarity and to the postulates of 
quantum measurement. We will also describe the principle of operation of qubit quantum gates
and show how these gates can be used to generate and analyse entanglement

We will then address the important question of quantum non-locality, the fact that two entangled
quantum systems separated by a large distance remain correlated in a way which cannot be
explained by classical arguments. We will analyse the famous EPR problem raised in a paper by 
Einstein in 1935 and show how experiments have been able to demonstrate the existence of 
these non-classical correlations. We will finally describe the procedure of quantum teleportation
which exploits the non-locality of quantum physics to transmit at a distance the quantum state of 
a qubit. 


