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Lecture 5: 
The theoretical framework of quantum theory and its

physical interpretation
Outline of lecture:

1. The introduction of matter waves by de Broglie, inspired by Einstein’s special relativity and photon
theory. Recovering Boh’s quantization rules of Hydrogen atom with de Broglie waves.
2. Discovery of Schrödinger’s equation describing the evolution of the matter waves. Extension
of this equation to a many-particle system. The probabilistic interpretation of the wave function.
Remark about the non-relativistic nature of this equation (see the relativistic Dirac equation in
Lecture 7).
3. Heisenberg uncertainty relations and Bohr’s complementarity principle. Tests of uncertainty
relations and complementarity by thought experiments. Consequences of Heisenberg uncertainty
relations for stability of atoms and relationship between the phase and the amplitude of an oscillator
4. Description of the modern quantum theory using the bra-ket Dirac formalism: Hilbert space of
quantum states, superposition principle. Physical obervables represented by operators acting in the
Hilbert space. Eigenstates and eigenvalues of obervables and their spectrum. The measurement
postulates of quantum physics. The wave function as a special representation of quantum states of
particles moving in space. Translation in space, momentum and time of quantum states.



23/02/2022

2

The veil is lifted on quanta: Matter waves
A few weeks after learning about Bose’s work, Einstein received in 1924 a letter from Langevin 
informing him about the work of his student, Louis de Broglie who had suggested that all particles, 
not only photons, have a wave like-character. Einstein recognized the importance of this work and 
the connection which could be made with the phenomenon of Bose—Einstein condensation that he had
just discovered. He wrote to Langevin: 

« de Broglie’s thesis has lifted a corner of the great veil »
and to Lorentz: 

« The young de Broglie has made a very interesting attempt to interpret the 
Bohr-Sommerfeld quantization rules. I think it is the first ray of weak light to illuminate these
rules, the worst of our physical puzzles. I have also discovered something which supports this

construction »

De Broglie intuition had come from both
Einstein’s 1905 photon and relativity
papers which he had studied in details. It 
is thus natural that this new revolutionary
idea resonated immediately with Einstein.  

Einstein 
and 
Langevin 
in 1922 
at the 
Collège
de 
France De Broglie in 1929

De Broglie wavelength of a massive particle

De Broglie extrapolated the relation between the photon momentum and wavelength to matter particles: 

Massless photon of momentum p=hn/c Matter particle of mass m and 
velocity v (electron, atom etc)

λ = c
ν
= h
(hν /c)

= h
p

This « heuristic analogy » compares the property of an intrinsicaly relativistic particle (the photon) with
that of non-relativistic massive particles. A free particle moving with momentum p=mV is associated to a 
plane wave whose spatial dependence at a given time writes in complex notation: 

if the particle moves along Ox; if its momentum is oriented
along an arbitrary direction

One recognize in the phase of this wave the momentum-space contribution of the 4-D scalar product introduced
in relativity theory. This suggests immediately to add the time dependence of the wave and to write it as:

ψ (!r ,t ) ∼ e − i (Et− !p .!r )/!

ψ ∼ e 2 iπx /λ = e ipx /! ψ ∼ e i
!p .!r /!

where E, the energy of the free particle, is equal to p2/2m at the non-relativistic limit (v<<c).  

λ = h
p
= h
mV
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Matter waves explain Bohr’s quantization rule

Bohr’s quantization rule of the electron angular momentum in hydrogen writes: 
mvr = n!

which can be expressed as: 
2π r = nλdB with λdB = h /mv

The quantization expresses the fact that there must be an integer number of 
electronic de Broglie wavelengths on the orbit circumference: this appears as a 
resonance condition analogous to the ones encountered with vibrating springs or 
electromagentic radiation between mirrors. The principal number of Bohr’s theory is
merely the number of de Broglie wavelenths accomodated along the orbit
circumference. The Schrödinger equation will show that in fact, the electron
angular momentum on the circular orbit is equal to n-1, not to n. 

The nth Bohr orbit described as a de Broglie wave
rotating on a circle and interfering constructively

with itself after a revolution (here n=50)

De Broglie wavelength and the threshold of BEC      
Einstein understood that de Broglie matter wave hypothesis gave a clear physical interpretation
of the BEC condensation phenomenon. For his calculation of the saturation of the ideal gas , he
had assumed that the phase space (r,p) of the atoms was divided into elementary cells of volume 
h3. This calculation yielded a critical atomic density (see lecture 4): 

N /V = ξ
2πmkBT
h2

⎛
⎝⎜

⎞
⎠⎟

3/2

with ξ = 2.61..

He realized that the quantity in the bracket
was the inverse of the cube of a de Broglie 
wavelength:  

λth =
h2

2πmkBT
⎛

⎝⎜
⎞

⎠⎟

1
2

which corresponds to atoms moving in the gas
with an average velocity:

vth = h / mλth = 2π kBT / m

of the order of the rms velocity in an ideal gas
at temperature T (vrms= (3kBT/m)1/2). 

BEC starts when the atomic density of the 
saturated phase (called also the thermal phase) 
becomes of the order of 1 atom per l3. The waves
of neighbouring atoms start to overlap and more 
and more atoms fall in the ground state.

When T decreases, the atomic de Broglie wavelength
increases to the point of condensation (few 100 nK)
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If there is a wave, what is its equation?
(Debye’s question  after a seminar in which Schrödinger presented de Broglie’s work in Zurich) 

Δψ = − p
2

!2
ψ with Δ = ∂2

∂x 2
+ ∂2

∂y 2
+ ∂2

∂z 2
(Laplacian)

i! ∂ψ
∂t

= Eψ = p 2

2m
ψ

i! ∂ψ
∂t

= − !
2

2m
Δψ

i! ∂ψ (
!r ,t )

∂t
=U !r( )ψ (!r ,t )− !

2

2m
Δψ (!r ,t )

E = p 2

2m
+U !r( )→ i! ∂

∂t
= − !

2

2m
Δ +U !r( )

To find the propagation 
equation for a free 
particle, take the sum of 
the second derivatives
with respect to space and 
compare to the first 
derivative with respect 
to time. Schrödinger equation for a 

free particle

To find the propagation 
equation of a particle in a 
time independent potential, 
just add the energy
potential to the Laplacian
term representing the 
kinetic energy

Schrödinger 
equation for a 
particle in a 
potential

The Schrödinger equation
The derivation outlined above is not a demonstration. A more elaborate justification of 
Schrödinger’s equation (SE) can be given based on the Hamilton-Jacobi version of classical
mechanics, by considering that quantum mechanics is related to classical physics in the same way as 
wave optics is an extension of ray optics. This is the route that Schrödinger followed to establish his
equation. Its true justification is its success: when extended to multiparticle systems,  its solutions 
– exact or numerical - fit with experimental observations in physics (structure of atoms, condensed
matter) and in chemistry (structure of molecules, chemical reactions).  In fact, SE must be
accepted, with its probabilistic interpretation, as a postulate of non-relativistic quantum physics.  

This equation is linear in y which means that if y1 and y2 are solutions, then a1y1+a2y2 is also a 
solution for arbitrary complex a1 and a2. This expresses the superposition principle of quantum 
physics: the matter waves can combine and interfere as light waves do in Maxwell’s theory. 

ih ∂ψ (
!r1,
!r2,!
"rn ,t )

∂t
= − !2

2mi

Δ i
i
∑ +U (!r1,

!r2,!
"rn )

⎡

⎣
⎢

⎤

⎦
⎥ψ (
!r1,
!r2,!
"rn ,t )

Extended to n interacting particles of masses mi at positions ri, y becomes a function of n+1 
variables (n positions + time) which obeys the generalized Schrödinger equation:  

Although based on extrapolation of photon properties, SE is not relativistic. Time and  space do not 
play symmetrical roles (1st derivative for time, 2nd for space). A relativistic equation for the electron
was derived one year later by Dirac, predicting t the electron spin and the positron. (see Lecture 6) .

The differential operator in 
the bracket is the system’s

Hamiltonian
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The probabilistic interpretation of the wave function
(Born-1925)

ψ (!r1!
"rn )

2 d 3r1!d
3r1

Joint probability to find the particles in small
volume elements !r1"

!rn
d 3r1!d

3r
around positions

ψ (!r1!
"rn )

2 d 3r1!d
3rn∫ = 1

Chance becomes an essential feature of quantum physics. Theory predicts
only probabilities to find results when measurements are performed. 

The evolution equation is deterministic as long as no attempt is made to perform a 
measurement, but system undergoes a random change when a measurement is made. 

Probability P(x1) = | Y (x1) | 2

In quantum physics
« God is paying dice »

Einstein did not 
like this….

Measurement changes the 
wave function in a random way

Y(x)

Particle
measured at 
position x1

« Collapse » 
of the wave

function
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Fourier transform of a wave packet
Consider a wave packet of plane em waves propagating along Oz :

k

g(k)

f (z,t) = g(k)ei(kz−ωt ) dk∫
The angular frequency w and wave vector k obey the dispersion relation: ω = ck

The spectral width of the wave packet is: Δω = cΔk
Assume that all the waves of the packet are in 
phase at z=t=0. Let us describe the spatial 
dependence of the packet at t=0. As z departs
from z=0, the exp(ikz) components of the wave
packet corresponding to different k’s
accumulate different phases. The interference
reduces notably the wave intensity when z 
departs from 0 by an amount Dz such that:  

Consider now the time evolution of the wave at 
z=0. The exp(-iwt) components get also
dephased as t departs from zero and the wave
decreases notably for:  

The expansion of the wave packet f (z,t) into
monochromatic waves exp(i(kz-wt) is a Fourier 
integral. The f and g functions are Fourier 
transform of each other. The condition of 
positive interference is satisfied at all space
time points such kz-wt=0. The wave packet is
thus propagating at the speed of light, without
changing shape. Its spatial extension is of the 
order of 1/Dk and its time duration at each point 
is of the order of 1/Dw. The extension in space
and time of the wave packet are inversely
proportional to the widths of the wave vector and 
angular frequancy distributions. This is a 
fundamental property of Fourier transforms. 

ΔkΔz ∼1

ΔωΔt ∼1

Δk

Heisenberg uncertainty relations
A wave packet associated to a free particle is a sum of plane waves with a distribution of momenta
around a central value p0. The situation is comparable to a light wave packet, sum of monochromatic
waves with wave vectors distributed around a central value k0.. Matter and light packets differ by 
their dispersion relation (linear in optics, quadratic in non relativistic wave mechanics):  

ψ (!r ,t) = g( !p)∫ ei(Ept− p.r )/!d 3p ; Ep =
p2

2m
= !

2k 2

2m
with k = p

!
= 2π
λdB

Ac(
!r ,t) = g(

!
k )ei(ω kt−

!
k .!r )d 3k∫ ; ω k = c k

At a given time, y and A are respectively the Fourier transforms of g(p) and g(k). 
The spatial extension of these functions are inversely proportional to that of their Fourier 
transforms (k or p distributions). If the waves propagate along the x direction, this implies that the 
product of the wave-vectors and position dispersion along x is of the order of unity. 

Wave mechanics

Wave optics

in optics becomes in quantum physics with similar relations along Oy & Oz 

A classical mathematics property takes a deep quantum meaning: the better is a 
particle localized in space, the less well known is its momentum, hence its velocity. 

The better its velocity is defined, the more diffuse is its position

ΔxΔk ∼1 ΔxΔp ∼ "
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Revisiting the Young double slit experiment:     
Uncertainty relations and complementarity
Revisiting the Young double slit experiment:
Uncertainty relations and complementarity

Young double-slit experiment can be realized with photons 
but also with particles (electrons, atoms, molecules etc..)

The statistical interpretation is simple: a plane wave (made of photons 
or massive particles) is diffracted by the slits, forming two secondary
waves which interfere constructively along the directions where they
are in phase (path difference equal to multiple of wavelengths), 
destructively along directions where they are in phase opposition (path
difference equal to odd multiples of half wave-lengths). The particles
impinge randomly on the detection screen at points where the 
probability amplitudes interfere constructively (bright fringes) and 
never fall where the interference is destructive (dark fringes).

This experiment can now be performed with sources sending particles one at a time. The 
interferences are then building up progressively as more and more particles are detected on the 
screen (see next two slides), In the 1920’s these were thought experiments whose interpretation
puzzled the founders of the quantum theory and gave rise to heated debates about the wave-
particle duality, notably between Bohr and Einstein. These discussions helped Bohr to develop his
principle of complementarity in  relation with the Heisenberg uncertainty principle.  

Fresnel biprism interference experiment (equivalent to 
Young double slit) with a single photon source (J-F Roch)
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Electron interferences: progressive build-up of fringes when
particles cross apparatus (biprism) one at a time (Tonomura)

The fringe pattern is an interference phenomenon illustrating the superposition 
principle of quantum theory. The fringes are observed only if both slits are 
open. When the experiment is performed with one particle at a time, it raises
puzzling questions for physicists used to think in terms of Newtonian
trajectories:

If each particle passes through one hole or the other, how can
its subsequent history depend on whether the other slit was
open or closed? 

How can the particle « know » what is the state of the other
slit to « decide » whether or not it can arrive on a dark fringe? 

What happens if we decide, without blocking one of the slits, 
to observe through which one did the particle pass?  

Puzzling questions about a simple experiment
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The moving slit thought experiment
Einstein:  Let us put the upper slit
on a moving screen suspended to a 
spring. If the particle passes 
through, it will be diffracted and 
the recoil will set the spring in 
motion. We will then now through
which slit the particle went, 
without blocking it. Will we then
see the fringes?
Bohr: This is a different experiment, with a different apparatus. In order to be able to detect
the small change in momentum experienced by the slit, its initial momentum must be very well
defined, with an uncertainty Dp smaller than the change which will be produced by the crossing
particle. The position of the slit will then be blurred by an amount at least equal to                     
This uncertainty will modify the difference between the two pathes and wash out the fringe
pattern. Thus, the Heisenberg uncertainty principle makes it impossible to know the trajectory
of the particle and to oberve its wave nature at the same time (more about this later).      
If fringes are observed, the trajectory has no physical reality: the particle crossed the 
screen in a superposition state, going through the two slits at the same time (more 
precisely, its wave function did it).

Δx = ! / Δp

Bohr’s complementarity
Speaking about the trajectory of a particle has no meaning, unless the experiment is designed to 
observe it. If the apparatus can perform the measurement of the position of the particle, it
perturbs it in such a way that the wave aspect vanishes and all information about the phase of the 
matter wave is lost. If on the other hand the fringes are observable, the experimental apparatus
cannot provide information about the trajectory. Observing trajectories or interfering patterns are 
two complementary aspects of the physical reality which require different experimental procedures
and equipment.The measurement always perturbs the system by the amount necessary to ensure that
the complementarity principle is satisfied.  

The trajectory of a particle in an interferopmeter has no reality unless the experiment is modified
to provide the required information. If this modification is made, it is not even necessary that this
information be registered. The mere fact that the information could be obtained means that the 
apparatus perturbs enough the system to make the interferences disappear.   
This principle extends to other kinds of measurements performed to measure complementary
observables about which it is impossible to obtain simultaneous information (see below spin systems). 
Bohr’s complementarity is not an independent postulate of quantum physics. It expresses in words
what is implied by the mathematical rules, established at the end of the 1920’s by Heisenberg, 
Schrödinger, Born, Dirac and von Neumann (see below). Complementary experiments are designed to 
focus on conjugate observables described by operators which do not commute and cannot be
measured simultaneously in a given experiment.   
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Heisenberg time-energy uncertainty relation
The properties of Fourier transform relate the width of the time and energy
distributions of a particle’s wave function by the same uncertainty relation as its
position and momentum: 

This relation is analogous to the one we have established for a light wave
packet (slide above): DwDt =1. It means that if a photon is created within a time 
interval whose duration has the uncertainty Dt, its energy will be defined within
an interval of the order of h/Dt. If a particle crosses a shutter whose opening
time has an uncertainty Dt, its energy must be spread over the interval h/DT. 
If the time at which the phase of  a light or matter wave takes a given value is
known with an uncertainty Dt, then its energy is defined with an uncertainty
h/Dt. In other words measuring with precision the time of an event in quantum 
physics is paid by an imprecision about the knowledge of the energy of the 
system. It also means that the more precise we want to measure an energy, the 
more time it will take. 

ΔEΔt ∼ "

Einstein’s challenge to the time-energy Heisenberg 
relation: the photon box thought experiment

Einstein: Imagine a box with perfectly reflecting walls in 
which a few photons are trapped. The box is suspended to 
a spring in the gravitational field of the Earth so that, by 
weighing it, one can determine its content of 
electromagnetic energy via the mass-energy and 
equivalence principle of general relativity. A precise clock
in the box activates a shutter letting a small number of 
photons to escape. The weight of the box can be measured
during a time as long as it takes to achieve an arbitrary
precision, before and after the shutter opening window. 
This opening can be as short as the experimenter decides. 
So the time-energy relation can be overcome!

Bohr: It cannot be true but I need time to think it out!
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General relativity saves Heisenberg uncertainty principle!
Call dm the uncertainty of the mass-equivalent change Dm of em energy in the box due to the escape 
of photons during the time interval t0 of the shutter opening. Einstein assumed that t0 could be made 
as small as wanted by using an arbitrary precise clock (this is a thought experiment!). Bohr showed
that there was an unescapable dt0 uncertainty due to general relativity, a reminder which must have 
been embarrasing to Einstein! 
Bohr’s reasoning:
The gravitational force acting on the scale’s
spring due to  the photons escape has an 
uncertainty:

δ F = gδm
This force, acting during time t0 accelerates the 
box which acquires a momentum with uncertainty:

δ p = δ F.t0 = gδm.t0

δ z = ! / δ p = !
gδm.t0

At this point, General Relativity intervenes: The 
clock’s altitude uncertainty results in a relative 
uncertainty of t0

δ t0
t0

= gδ z
c2

= !
δmc2t0

According to the position-momentum Heisenberg 
uncertainty, this results in a  fuzziness of the 
altitude of the box in the Earth field:

δmc2.δ t0 = !Hence:

We neglected here the spring restoring force. This is
legitimate if the period of the spring oscillation is
very long compared to t0. The effect of the 
additional force due to the change of the pull on the 
spring during t0 is then negligible compared to Dmg.  

Is it strange that GR has to be invoked for the 
consistancy of quantum Mechanics?...              

Not really considering the assumptions made 
for this thought experiment!

Minimum size of atom imposed by uncertainty relations
Consider the Bohr radius of the Hydrogen atom and ask why the electron cannot
get closer to the proton by radiating em energy, as it would do according to 
Maxwell. 

Suppose that the electron gets at distance from nucleus r0 smaller than a0. Its
potential energy decreases as –e2/r0 but its localization implies that its
momentum uncertainty increases as h/r0 and its kinetic energy becomes at least 
h2/2mr0

2. Hence the total energy:  

− e
2

r0
+ !2

2mr0
2

which is minimal for : r0 = a0 = !
2 / me2

The Heisenberg uncertainy relation  prevents the electron to fall on nucleus!

Combined with the Pauli exclusion principle, it explains the size of atoms
(electrons must occupy more and more excited orbits as Z increases.) 

Same argument explains
the zero point energy of 
harmonic oscillator (see

later)
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Uncertainty relation between the amplitude and the 
phase of a field mode or a harmonic oscillator

t

Δt P(n)

n

t

Δt P(n)

n

Δn

ΔE ∼ " / Δt = !ω / Δϕ

ΔE = Δn!ω ∼ "ω / Δϕ

Δn.Δϕ ∼1
Δn
n

Δϕ ∼ 1
n

n

Δn
n

= Δϕ ∼ 1
n

When its photon number (hence its energy)  is well defined, the phase j of a field mode is
completely random. To have a well defined phase, the field must be in a coherent superposition of 
different photon numbers around a mean value n. The best approximation of a classical field has its
phase and relative photon number uncertainties equal to          . The extreme phase stability of 
lasers (for example in gravitational wave antennas) is related to their very large intensity. Same
formulas apply to material quantum oscillators (photons replaced by vibration quanta  or phonons).

1/ n

Δn = 0

Δn ∼ 1
n

The principles of quantum physics
In the first part of this lecture we have presented the conceptual ideas of
quantum physics in qualitative terms. We will now present briefly the mathematical
framework which has allowed physicists to make quantitative calculations and
predictions about quantum phenomena. This framework has emerged during the
period 1925-1930 and has expressed by precise mathematical equations what Bohr
had semi-intuitively stated with his concept of complementarity.

We will recall the Dirac formalism of quantum physics which describes quantum
states as vectors of an abstract Hilbert space and physical observables as
Hermitian operators acting on these vectors. The postulates of quantum
measurement will then be enunciated. The position, momentum and energy
operators of a particle will be described as the generators of the translations in
momentum, space and time of the quantum states. This approach gives a deeper
meaning to Schrödinger’s equation and allows us to re-analyse quantum
interference experiments and complementarity in quantitative terms.
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Reminder about the rules of real vector spaces
Vectors belonging to a vector space are mathematical objects which may be added and multiplied by 
real numbers according to distributive and commutative rules. An example is given by the 3D vectors
of ordinary euclidian space (vectors representing position, velocity or forces). The vector space may
have 2 dimensions (vectors in plane), 3D (vectors in space), 4D (vectors in space-time) or more 
dimensions…A few rules of vectors addition and multiplication by real numbers are recalled below: 

Addition of vectors: Multiplication by real numbers: Linear combinations

Scalar product of vectors: commutative application of a couple of vectors on real numbers:

!a

!a !a!
b

2
!
b

!a +
!
b 2 !a

!a + 2
!
b

α ,β ,γ ...real numbers

( !a,
!
b)→ !a.

!
b =
!
b.!a

α !a.(β
!
b + γ !c) =αβ !a.

!
b +αγ !a.!cDistibutivity of scalar product

Vector representation in orthogonal basis

Definition of orthonormalize basis of vectors:

Coordinates of a vector in a basis: 

Linear operations on vectors: example of rotations:

!ei .
!ej = δ ij i = 1,2!d

!a = ( !a.!ei )
!ei

1≤i≤d
∑

!a = ( !a.!ei )
!ei

1≤i≤d
∑ = ci

!ei
i
∑

ci =
!a.!ei : real coordinate of

!a in !ei{ } basis

!e1

!e2

!e3

!a

Example of 
3D vector

space

c1
c2

c3

R( !a) = ( !a.!ei )R(
!ei )

i
∑ with R(!ei ) = Rij

!ej
j
∑ R( !a) = c ' j

!ej
j
∑

The c’j coordinates of the rotated vector are linear
combinations of the ci ‘s whose coefficients are given

by a d x d matrix Rij. 

c ' j = Rijci
i
∑
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Commuting and non commuting operations: example of 
rotations

Rotations around same axis commute: 

Rotations around different axis do not commute:

Rz ,θ1 × Rz ,θ2 = Rz ,θ2 × Rz ,θ1

z

x

y

Ry ,θ=π /2 × Rz ,θ=π /2 Rz ,θ=π /2 × Ry ,θ=π /2

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y
Rz ,θ=π /2

Ry ,θ=π /2

Ry ,θ=π /2 Ry ,θ=π /2 Rz ,θ=π /2

≠

The Hilbert space of quantum states: Dirac bra-kets
The states of a quantum system are described by vectors in an abstract complex vectorial Hilbert 
space which obey the rules of linear algebra. The dimension d of the Hilbert space can be finite
( ) or infinite. For sake of simplicity we will first consider the case of systems evolving in a 
Hilbert space of finite dimension and generalize later to the infinite dimension situation. 

ψ

Following the elegant notation introduced by 
Dirac, state vectors are noted by « kets »: 

Any linear combination of kets representing
different states of the system is a possible state: 

ψ = ci ϕ i
i
∑

where the ci’s are complex numbers. This 
property expresses the superposition principle of 
quantum physics, analogous to the superposition 
principle of optics and electromagnetism. The ci’s
are called « probability amplitudes ».

D ≥ 2

To any ket |y>, is associated a 
conjugate ‘’bra’’ <y |:  

The c-number <y|j> is analogous to the 
scalar product of two vectors in an 
ordinary vectorial space. The difference
is that the inner product (which is also
called the Hermitian product of the two
kets) is a complex number whose
physical meaning will be discussed later. 

ψ → ψ
<y| is a functional which images any ket 
|j> onto the body of complex numbers:

ψ applied to ϕ = complex number noted ψ ϕ
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Hermitian products and projections of quantum states

c1 ψ 1 + c2 ψ 2 → c1
* ψ 1 + c2

* ψ 2

where the star denotes the complex conjugation: 

(a + ib)* = a − ib (a,b reals)

It follows that the correspondence between
kets and bras is antilinear: 

ψ ϕ = ϕ ψ
*

The Hermitian product of two states is non-
commutative: 

In analogy with ordinary vector algebra, 
two states are orthogonal if:

And a state is normalized to unity if: 

ψ ϕ = 0

ψ ψ = 1

The projection of state |Y> on state |ji> 
is defined as:

ϕ i ϕ i ψ
It is the state |ji> multiplied by the 
c-number <ji|y>. This notation lead us 
to define the projection operator as: 

Pi = ϕ
i

ϕ i
Pi is a linear operator of the Hilbert 
space transforming any state into a 
state colinear with |ji> (analogous to 
the projection on a vector basis in a 
real vector space).
In an Hilbert space of dimension d one can
define a set of d states forming an 
orthonormal basis on which any state of 
the space can be developped (see next
slide)    

States and operators representations
In a Hilbert space of dimension d, we can define
a set of d orthonormalized vectors satisfyng
the conditions: 

ϕ i ϕ j = δ ij

The sum of the projectors on the |ji>’s is
equal to the identity: 

Pi =
i
∑ ϕ

i
ϕ i = I

i
∑

The |ji> form a complete basis since any state 
can be developped along it according to: 

ψ = I ψ = ϕ i ϕ i ψ
i
∑ =

ci ϕ i
i
∑ (ci = ϕ i ψ )

(I = identity operator)

An operator A in the Hilbert space is a 
linear application which images any state 
into another one. The Dirac notation 
allows us to represent any operator A as=

Â = I × Â× I = i i
i, j
∑ A j j = Aij i

ij
∑ j

to simplify the notation, I have replaced
the notation |ji> simply by |i>. The Aij’s
are the matrix elements of the 
operator A in the basis |i>. 

Âψ = Aij i j ψ = ci i
i
∑

i, j
∑

with ci = Aij j ψ
j
∑

We retrieve here very simply with the Dirac 
notations the usual rule of matrix algebra. 
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Eigenstates and eigenvalues of Hermitian operators

The adjoint       of an operator O is its
transpose conjugate, whose matrix elements
are in all bases related to those of O by the 
relation:

O†

Physical observables of a quantum system 
are associated with Hermitian operators
which are their self-adjoint, satisfying the 
condition:

O†
ij = Oji

*

There is a basis in which these observables 
are diagonal, with real matrix elements [ai] 
which constitute the spectrum of the 
observable: 

An eigenstate of an operator A is a state 
which is transformed in a colinear state 
by the action of A:  

A a = λa a

The coefficient la is called the eigenvalue
of the eigenstate |a>. 

O iα = ai iα and O = ai
i,α
∑ iα iα

ai = Oiα ,iα : real eigenvalue⎡⎣ ⎤⎦

The ai eigenvalue may be degenerate, the 
eigen-subspace being spanned by several
basis states |ia>. 

O = O† Oij = Oji
*

hence: 

The measurement postulates
When a measurement of the observable O is
performed on the system in state |y>, the result is
one of the eigenvalues of the observable. The 
probability to find ai is: 

Πi = ψ iα
α
∑ iα ψ = iα ψ

α
∑ 2

Πi = ψ ψ
i
∑ = 1

(hence the name of probability amplitude given
to the Hermitian products of states). We assume 
here that the state |y> is normalized to unity, so
that the sum of the Pi is equal to 1:

Immediately after the measurement the state of 
A is projected onto the ith subspace:

ψ i = iα iα ψ
α
∑

j ≠ i

This is the measurement induced « collapse » of 
the state. If the measurement is immediately
repeated, the same result is found, the state 
being then unchanged.

Observable mean value: Repeating the 
measurement of an observable O on an 
ensemble of systems prepared in the same
quantum state |y> yields a mean value: 

ai = ψ iα
i,α
∏ ai iα ψ = ψ O ψ

There is a mean square root deviation around
this mean value describing the uncertainty of 
the measurement (see below). 

All information is lost about the amplitudes   <j |y> 
of the initial state with .                  

Quantum interferences: if |y> is a superposition:

ψ = cj ψ j
j
∑ Πi = cj

*cj ' ψ j iα
j , j '
∑

α
∑ iα ψ j '

The cj probability amplitudes of state components 
non-orthogonal to the eigensubspace selected by 
measurement interfere (cjc*j’ terms). 
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Properties of commuting observables
We define in this way a complete set of 
commuting observables (CSCO)  with a 
common basis of eigenstates. Each of these
states is uniquely defined by the sequence
of quantum numbers [ai,bi, gib…]. It could be
theoretically prepared (randomly) by 
performing a measurement of the CSCO’s
giving as results the corresponding
eigenvalues.  

Consider two commuting observable A and B 
such that: 

AB − BA = 0
Applying AB and BA on an eigenstate |ia> of A 
with eigenvalue ai we get: 

BA iα = aiB iα = A B iα⎡⎣ ⎤⎦
which shows that B|ia> belongs to the eigensubspace
of the eigenvalue ai of A. B  has thus no matrix 
elements between different eigensubspaces of A. 
By a change of basis, it is possible to diagonalize B 
in each eigensubspace of A, yielding: 

where the |bi> are linear superpositions of the 
|ia>’s. If the {ai, bi)’s do not completely specify the 
common eigenstate, a third observable C 
commuting with A and B can be added…etc…until all 
bases states are unambigously determined. 

Example: A has three
eigenvalues each of 
them being two times 
degenerate: B has non 
zero matrix elements
only within the three
colored boxes. By 
changing bases, B can
be diagonalized in each
box, leading to 6 
uniquely defined
diagonal states. 

a1,β1
a1,β2

a2 ,β3

a2 ,β4

a3,β5

a3,β6

A βi = ai βi ; B βi = βi βi

Suppose that one prepares a system in state |y> and 
mesure succcessively observable A and B, then A 
again. If A and B commute, the second measurement
leaves the system in the eigenspace corresponding to 
the eigenvalue ai obtained in the first measurement
and the subsequent measurement of A yields the same
result as the first. Measuring B does not alter the 
measurement of A and conversely, measuring A does
not change the result obtained when measuring B. The 
observables A and B are said to be compatible

Measurement of non-commuting observables and uncertainty
relations

The situation is different if A and B do not commute: 
AB − BA = A,B⎡⎣ ⎤⎦ ≠ 0

In this case, measuring B projects the system into a 
state presenting components outside the eigensubspace
of A resulting from the first measurement and there is
a probability that the repeated measurement of A yield
a different result than the first one

a1 a1

Measurement selects 
one eigenspace of A 

(in red) 

Measuring B mixes 
different

eigensubspaces of A

Measuring B perturbs the probability
distribution of results of measurement
of A. The Heisenberg uncertainty
relation between x and p is an example
of the incompatibility of measuring
with arbitrary precision non-commuting
observables (see below). 

After Measuring A After measuring B

a2

a3



23/02/2022

18

Position, momentum and Hamiltonian operators in x,p bases
We now apply the postulates to the position and 
momentum operators X and  Px of a particle. We
restrict the formulas to one spatial dimension and will
extend them to x,y,z when needed. The spectra of X 
and Px being continuous, the Hilbert space of the 
particle is of infinite dimension and the discrete
expansions of the states and operators become
integrals:

x∫ x dx = I ; x x ' = δ (x − x ')

The wave function y(x) is the Hermitian product of 
the bra <x| with the ket |y>. The probability to find
x between x and x+dx is: 

Π(x)dx = x ψ
2
dx = ψ (x)

2

X x = x x ; ψ = x∫ x ψ dx = ψ (x)∫ x dx

The action of X (or a function U(X)) on the wave
function amounts to multiplication by x (or U(x)):  

x X ψ = x x ψ = xψ (x) x U (X )ψ =U (x)ψ (x)

Similar formulas apply to the momentum: 

P p = p p ; ψ = p∫ pψ dp = !ψ ( p) p dp∫
|y> is represented by the momentum
function = <p|y> in the |p> basis, with
the Fourier transform (FT) correspondence: 

(

x Pψ = eipx/!∫ p !ψ ( p)dp = !
i
∂ψ (x)
∂x

The wave function of the state Pxly> is
obtained in the same way: 

!ψ ( p) = pψ = p x∫ x ψ dx = 1
2π"

e− ipx/"ψ (x)dx∫

(the FT of the derivative of a function of x is
equal to the FT of the function multiplied by the 
conjugate variable p).

!ψ ( p)

Commutator of X and Px and standard form of Heisenberg 
relations

x X ,Px⎡⎣ ⎤⎦ψ = x XPx − Px X⎡⎣ ⎤⎦ψ = !
i
x
∂ψ (x)
∂x

− ∂[xψ (x)
∂x

⎡

⎣
⎢

⎤

⎦
⎥ = i!ψ (x)

X ,Px⎡⎣ ⎤⎦ = Y ,Py⎡⎣ ⎤⎦ = Z ,Pz⎡⎣ ⎤⎦ = i! × I Ri ,Pj⎡⎣ ⎤⎦ = i!δ ij × I

X ' = X − X I ; P 'x = Px − Px

Ψ = X '− iλP 'x( )ψ

Ψ Ψ = ψ X '− iλP 'x( ) X '+ iλP 'x( )ψ
Ψ Ψ = ψ X '2+ λ 2P 'x

2+ iλ X 'P 'x− P 'x X '( )ψ

!2 − 4Δx2Δpx
2 ≤ 0 → ΔxΔpx ≥

!
2

Ground state energy obtained by 
replacing <p2>= Dp2 by h2/4<x2> and 
minimizing with respect to <x2>:  

p2 / 2m+mω 2 x2 / 2

x2
min

= ! / 2mω ; p2
min

= !mω / 2

. 
Apply to the ground state of a Harmonic
oscillator. The mean energy of the 
oscillator, sum of its kinetic and potential
contributions is: 

The potential and kinetic energy of ground
state are both equal to hw/4 and total 
energy to hw/2 Due to X and Px non commu-
tation oscillator has zero point quantum 
fluctuations preventing it to be motionless. 

Commutators of X and P components

Standard deviations of X an P: 

For any ket |y> consider the ket (l real):

and compute its norm: 

Norm always positive requires that equation
has no real racines , hence:

ΔxΔpx ≥
!
2

0

Ψ Ψ = Δx2 + λ 2Δpx
2 − λ! ≥ 0 ∀λ real( )
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The Hamiltonian H = P2/2m + U(x) of a particle, 
is its energy observable. In the x-
representation the action of H on the wave
function writes:

x H ψ = − !
2

2m
∂2ψ (x)
∂x2

+U (x)ψ (x)

The Hamitonian as the energy operator in  Hilbert space

The eigenstates of the Hamitonian are the energy
states of the particle. They satisfy the eigenvalue
equation:

H ψ = E ψ

which in the 3D X,Y,Z-representation is a 
second order differential equation for the 
wave function:  

− !
2

2m
Δψ (!r )+U (!r )ψ (!r ) = Eψ (!r )

This is the so-called « time-independent » 
Schrödinger equation. It has exact solutions 
for two problems: 
The hydrogen atom: 

U (!r ) = − e
2

r
→ En,l ,m = − "

2

me2
1
n2

Schödinger equation gives the same spectrum as 
Bohr model. H commuting with the square of 
angular momentum L2 and its component along
Oz, Lz, the energy levels are degenerate, hence
the quantum numbers l and m labelling the 
states in addition to energy (see lecture 6). 

(n = 1,2....∞)

The harmonic oscillator of angular frequency w:

U (!r ) = mω
2r 2

2
→ Enx ,ny ,nz = (nx + ny + nz + 3/ 2)!ω

Each degree of freedom (x,y,z) is a 1D harmonic
oscillator with spectrum:

En = (n+
1
2
)!ω

En,l ,m = − me
4

2!2
1
n2

Translation of quantum state in time, position & momentum

A function f(O) of an observable O is defined by 
its action on a basis of O (with eigenvalues ai) as:

f (O) iα = f (ai ) iα
and the action of f(O) on state |y> writes: 

f O( )ψ = f (ai ) iα
i,α
∑ iα ψ

Applying this definition to the Hamiltonian H, we get: 

e− iHt /! ψ (0) = e− iEt /! E,α
E ,α
∑ E,α ψ (0) = ψ (t)

The complex exponential of the Hamiltonian
operator: 

describes the translation in time of the quantum 
states:

U (t) = e− iHt /!

ψ (t) =U (t)ψ (0)

x e− iPx0 /! ψ = dpe− ipx0 /! x p∫ pψ =
1
2π! ∫ dpe

ip(x−x0 )/! "ψ ( p) =ψ (x − x0 )

we get: 

The momentum operator generates the
translation in space of the quantum state.

Tx0 (P) = exp(−ix0P / !)

Tp0 (X ) = exp(ip0X / !)
translates the quantum state momentum:

p exp(ip0X / !)ψ = !ψ ( p − p0 )
The position operator is the generator of the 
translations in momentum space.

In a symmetrical way the operator: 

Consider now the complex exponential of 
the momentum operator Px

We now show that the complex exponentials of H,P and X are the translation operators in time, space
and momentum of quantum states 
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Concluding remarks
The formalism of quantum physics has emerged in 1925, shortly after de Broglie hypothesis of 
matter waves, with the discovery of Schrödinger’s equation and of an equivalent formulation by 
Heisenberg who had developed a matrix description of physical obervables. The concepts of 
complementarity and of uncertainties in the measurement of incompatible physical quantities, first 
discussed qualitatively by Bohr was given a rigorous mathematical basis when the Hilbert space
formalism of quantum theory has been discovered. This theory is essentially probabilistic as opposed
to the absolute determinism of classical physics. 

The quantum states of a physical system are vectors in an abstract Hilbert space, obeying to a linear
algebra. The inner products of two vectors in this space are c-numbers. Any physical obervable is
associated to a Hermitian operator in the Hilbert space whose eigenstates form a basis on which any
state can be developed. When measuring an obervable on a system in a given quantum state, one 
obtains randomly one of the eigenvalues of the observable spectrum and the state is irreversibly
projected onto the corresponding eigensubspace. The probability of the outcome is the square of 
the norm of this projection. If the measured state is a superposition of several states non 
orthogonal to the eigenspace corresponding to the result, the complex amplitudes of this
superposition interfere in the outcome probability. The measurement perturbs in an irreversible way
the observed system’s state, making it impossible to determine with precision the values of 
observables described by non-commuting operators. We will continue to discuss the basic concepts 
of the quantum theory and their physical implications in lectures 6 and 7. 


