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Outline of lecture 4
Describe how interrogations about light phenomena which could not be explained

by the principles of classical physics (Maxwell equations and thermodynamics) 
have led to the emergence of quantum concepts.

Remind the central role played by Einstein in this story

Follow the evolution of the quantum ideas between 1900 and 1924 from Planck’s law
to the eve of de Broglie hypothesis about matter waves.

Covered topics: The blackbody radiation puzzle and the introduction of the 
photon in physics, the photo-electric effect, the wave-particle duality, the heat
capacity of solids, the Bohr-Sommerfeld atom, the discovery of stimulated
emission, Bose statistics and the prediction of Bose-Einstein condensation, the 
Pauli exclusion principle and the Fermi Dirac statistics. 

This historical introduction to quanta will follow chronological order

The two papers which started the quantum revolution

Planck 
(December 1900)

Einstein 
(March 1905)

(On a heuristic view point concerning the production and transformation of light) 

(On the theory of the energy distribution law of the normal spectrum)
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The ultraviolet catastrophe and the birth of quanta       
(1900-1905)

T
Measuring the 

spectral distribution 
of the light radiated
by a « blackbody » 
furnace (important 

for industry)

A box with black walls (absorbing all the light) is pierced by a small hole. The em field inside the box 
is in equilibrium with the atoms of the walls at a fixed temperature T. Experimental spectrum of 
escaping light is universal and depends only on T.  The intensity vs frequency (or wavelength) varies 
according to  a bell-shaped curve with maximum at wavelength: 

λmax (T ) =
C
T

with C = 2.9 ×10−3m.K (Wien’s law)

Maximum shifts towards short wavelengths as T increases. Centered in the infrared at room 
temperature, it falls above 4000 K in the visible spectral window. Classical theory unable to explain.

Classical
theory

Wavelength l

Classical physics is unable to explain this universal
spectrum and predicts absurd result: the uv catastrophe
In order to describe the spectrum, combine Maxwell’s equations with the laws of thermodynamics. 
Maxwell says that the field expands over modes defined by their polarization and their k vector:

In a cubic box of side L and volume V=L3 , it is
convenient to count the modes by introducing the 
cyclic boundary conditions:

kx = nx
2π
L
;ky = ny

2π
L
;kz = nz

2π
L

nx ,ny ,nz integers

The number of modes with k comprised
between k and k+dk or n between n and n+dn is: 

!
k = 2πν

c
!uθ ,ϕ : unit vector along direction q,j

!uθ ,ϕ

2 × 4πk 2dk L
2π

⎛
⎝⎜

⎞
⎠⎟
3

= V
π 2 k

2dk = 8πV
c 3

ν 2dν

Invoking the thermodynamical principle of 
equipartition of energy, Rayleigh and Jeans 
have assumed that at thermal equilibrium at 
temperature T, each mode is an oscillator
which has on average the energy kBT where
kB is the Boltzmann constant. They then find
a spectral density of em energy in the box 
increasing as v2 and diverging at short 
wavelengths, yielding an infinite total field
energy density:    

I (ν )dν = 8π
c 3
kBTν

2dν
There is good agreement with experiment
for small n, but for large n there is a conflict
between Maxwell and Boltzmann, as there
was one between Maxwell and Galileo!



18/02/2022

4

The second principle of thermodynamics: free energy
A system in contact with a reservoir at temperature T settles in equilibrium in 

the state which minimizes its free energy:

Energy (J) Entropy
(J/K)

Free energy: 

Absolute
temperature (K)

Nature is at the same time ‘’lazy’’ (a system at 
thermal equilibrium tends to decrease its

energy) and ‘’messy’’ (it tends to increase its
disorder). The equilibrium between small E 

and large S depends on temperature. 

System 
«prefers» to 
minimize E

System 
« prefers» to 
maximize S

System 
«compromizes» 

between minimizing
E and maximizing S:

Example of isotherm gas in a gravitational field

Compromise: exponential distribution of energy: 

kB = 1.38×10
−23J / K

zm

kBT ≫ mgzmkBT ≪ mgzm kBT ∼ mgzm

Boltzmann law

Entropy unit:

p(E) ∼ e−E /kBT

F = E −TS

Considering that each field mode is an oscillator at 
thermal equilibrium and that its energy varies 
continuously, Rayleigh and Jeans got the 
oscillator energy probability distribution in each
mode: 

with Z satisfying the normalization condition:

A simple integration then yields the average
energy in each mode: 

which is the result leading to the uv catastrophe.     
To avoid it, make the asumption that the energy of 
oscillators varies in discrete steps.

Divide instead the continuum of energies in 
small intervals proportional to n:

δEν = hν
where h is a small constant, with dimension of 
an action (Joule x second), with value to be
fixed. The integral becomes a series:

(x = hν / kBT )

Z = e−nhν /kBT
n
∑ = e−nx = 1

1− e− xn
∑

ne−nx
n
∑ = − dZ

dx
= e− x

1− e− x( )2

and after straightforward steps: 

The introduction of quanta freezes the high frequency modes

Eν = kBT
xe− x

1− e− x
= kBT

x
ex −1

p(E) = 1
Z
e−E /kBT

p(E)dE = 1→∫ Z = e−E /kBT dE =
0

∞

∫ kBT

E = Ep(E)dE = 1
kBT

Ee−E /kBT dE = kBT∫∫

Eν =
1
Z

n
n
∑ hνe−hν /kBT =

kBT
Z
x ne−nx
n
∑
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hν < kBT hν > kBT

E ∼ kBT E ≪ kBT

Low
fre

que
ncy

modes

Excited states are 
populated: equipartition
of energy is satisfied

It costs too much in energy to increase
the entropy by populating excited

states: field oscillators remain frozen
in ground state

kBT

High frequency modes

The discrete nature of the field energy scale freezes in 
ground state the high frequency modes of field

uv catastrophe 
avoided

Eν = kBT
x

ex −1
; x = hν

kBT

Eν = kBT
x

ex −1
(x = hν / kBT )

For low frequencies n <<kBT/h : x≪1→ Eν = kBT
Equipartition of energy holds

and R-J is a good 
approximation at long 

wavelength

For high frequencies n >>  kBT/h x≫1→ Eν → 0 Modes are frozen in their
ground states

I λ( )dλ ∼ 8πhc
λ 5

1
ehc/λkBT −1

dλI (ν )dν = 8πhν
3

c 3
1

ehν /kBT −1
dν

These two equivalent expressions fit perfectly the experimental spectrum, when Planck gives to 
the free parameter h the value: 

h = 6.626 ×10−34 J × s

The spectrum at temperature T is readily deduced: 

Planck’s law (1900)

M.Planck
(1858-1947)
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The photon (1905)
For Einstein, the quanta were more than a trick to reconcile Maxwell with Boltzmann: the blackbody
law shows that the em field is made of light quanta (which will be later called photons) propagating in 
empty space with light’s velocity c. The energy and momentum of a plane wave photon of frequency n
are respectively:   

E = hν ; p = hν
c

= h
λ

We will see later that a photon of circularly polarized light also carries a unit of angular momentum
Sam along its direction of propagation:  

The energy of a red photon of frequency 4.1014 Hz (l =0,75 microns) is:

Ered = 6.6 ×10
−34 × 4 ×1014 = 2.64 ×10−19 J = 1,65eV

(One eV=1.6 10-19J  is the energy acquired by an electron accelerated between points whose electric
potential differ by one Volt)  

A lamp with a light power of 100 watts emits 3.8x1020  photons per second!
Light quanta are very tiny but they have macroscopic effects:  their existence 

resolves the mystery of the thermal radiation spectrum and explains many other
phenomena

Sam = ± h
2π

= ±!

A light quantum is annihilated by 
ejecting an electron from metal, 

provided its energy hn exceeds the 
electron extraction threshold. The 

kinetic energy of the emitted
electron must increase linearly with
the light frequency above threshold

(slope yields Planck’s constant, 
verified experimentally by Millikan) 

Field quantization explains the photoelectric effect (1905)

Einstein’s Nobel Prize in 1921: the citation quotes the photoelectric effect
with no mention of either Relativity or Quanta! 

hν =W + Eelectron

Intense red light (whose frequency is below threshold) does not extract any
electron while a faint blue light whose frequency is above threshold does.

electron
energy
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Ambigram by Douglas Hofstadter

The photon 
introduces the 
wave-particle
dualism in 
physics which
will have 
tremendous
consequences
for our
understanding
of the world at 
the microscopic
as well as 
cosmological
levels

Reconciliation between Huygens and Newton?
Light behaves as a wave when it propagates and gives rise to 

interference, reflection and refraction effects. On the other hand, 
it behaves as a flow of particles when it interacts with atomic

matter. How to describe this ambivalent behaviour in a consistant 
way? 

Huygens
Newton

Einstein
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Einstein extends quanta to matter by solving
the puzzle of the heat capacity of solids (1911)

Empirical law: the heat capacity of a large class of solids is equal to 3kB per atom (Dulong and 
Petit law, 19th century). Boltzmann explains it by assuming that each atom in a crystal is a 
small oscillator vibrating around its equilibrium position along the three directions of space. 
The equipartition of energy gives the energy kBT to each of these oscillators.
For some solids (for example carbon in the form of diamond), the heat capacity is at room 
temperature well below the 3kB value (of the order of 0,8kB). Einstein assumed that the atomic
oscillation vibrations are quantized like the modes of the em field and that for very rigid bodies like
diamond, the vibration frequencies are so high that the corresponding vibration modes are frozen. 
By mererely applying Planck’s law he finds:  

dEν

dT
= d
dT

3kBT
x

ex −1
⎡
⎣⎢

⎤
⎦⎥
= 3kB

x2ex

ex −1( )2
which tends towards 3kB for x<<1 and 
decreases towards 0 when x increases

The vibration freezing starts for x of order 1. At room temperature T=300K,  x=1 corresponds to  
v =kBT/h =  6.1012 Hz. The vibration frequency in diamond is 3.1013 Hz (x =5), which explains its

small heat capacity at room T. The Planck’s law predicts that all elements obeying Dulong and Petit 
law have their heat capacity dropping below a certain temperature and tending towards zero as T

approaches 0K.  Einstein presented these results at the first Solvay meeting of 1911. 

(x = hν / kBT )

Solvay meeting of 1911 in 
Brussels

EinsteinRutherford

LangevinKammerlingh
Onnes

PoincaréCurie
Lorentz

M. De Broglie

Solvay Perrin

Sommerfeld
Planck

Brillouin

Jeans

Nernst
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The birth of the quantum atom

1897-1904: Thomson discovers the electron in cathode rays 
and proposes an atom model with negative electrons
immersed in a positively charged jelly ( « plum-pudding » 
model)

1909-1911: Rutherford bombards a thin gold foil with
alpha particles and discovers that positively charged
atomic nuclei concentrate nearly all the atomic mass: 
this suggests to Rutherford and Perrin that the atom is
a microscopic planetary system, with light electrons
orbiting the heavy nucleus like planets around the Sun.

J.J 
Thomson 

(1856-1940
E.Rutherford
(1871-1937)

J.Perrin
(1871-1942)

The Hydrogen Bohr atom (1913)
The electron revolves on circular
orbits whose energies and radii
are quantized and labelled by the 
quantum number n. The electron
can jump from one orbit to 
another by emitting or absorbing
a photon, with conservation of 
energy of the atom+field system. 
These quantum jumps occur at 
random times whose probability
can only be predicted. The ground
state (n=1) is stable. This model 
gives accurately the observed
spectrum of Hydrogen (series
Lyman starting from n=1, Balmer 
from n=2 etc….)

νn ′n = En − E ′n

h

rn = a0n
2 En = − R

n2
Bohr radius

Rydberg 
constant

N.Bohr
(1885-1962)
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Bohr’s model
Bohr assumed that the angular momentum on the nth electron orbit is quantized:in units of h/2p= !

mω nrn
2 = n!

Calling wn the angular velocity of the electron, rn the radius of its orbit and m its mass, we have:  

Another relation between wn and rn expresses the balance between the centrifugal force 
experienced by the electron and the electrostatic force attracting it to the nucleus: 

mω n
2rn =

e 2

rn
2

(e 2 = qe
2 / 4πε0 )

From these two relations, Bohr gets: rn = n
2a0 with a0 =

!2

me 2
And the energy of the nth state: En = − e

2

2rn
= −me

4

2!2
1
n2

= − R0
n2

with R0 =
me 4

2!2

It is instructive to express these results in terms of the dimensionless fine structure constant a: 

α = e
2

!c
≈ 1
137

En = −α 2 mc 2

2n2
; rn = n

2 !
αmc

vn =ω nrn =α
c
n

The small value of a indicates that the electron in Hydrogen is non-relativistic (its velocity is 137 n 
times smaller than c and its binding  energy of the order of 10-4 to 10-5 times mc2).

The Sommerfeld Hydrogen atom: elliptical orbits of principal 
quantum number n and angular momenta k=1,2,3…..n.

The orbits of same principal quantum 
number n and different angular
momenta (k=1,2, …n) are degenerate
when relativistic effects are 
neglected. When they are taken into
account, the degeracy is lifted
because the electron becomes
heavier when it gets close to the 
nucleus on low angular momentum
orbits. The model qualitatively
explains the fine structure splitting

of the spectral lines but is not quantitatively correct because it does not include
another relativistic effect: the existence of the electron spin and its interaction 
with the motional magnetic field seen by the electron moving in the electrostatic
field of the nucleus.  

1916

k = 1

k = 2

k = 3
k = 4
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Einstein returns to Planck’s law and discovers
stimulated emission (1916)

Bohr’s model allowed to describe both atoms and radiation with quantum concepts. 
Einstein decided to revisit Planck’s law, analyzing the microscopic processes by 
which the atoms in the walls of the black box interact with light. Consider the 
following simple model: the walls contain subsets of two level atoms in thermal 
equlibrium at temperature T able to absorb or emit light at all frequencies and 
focus on the subset which interacts with a mode of frequency n with a spectral 
density I(n). Let us call n0(n) and n1(n) the number of atoms in the levels E1 and E0
such that E1-E0=hn and let us express that these numbers remain stationnary at 
thermal equilibrium under the balanced effects of light absorption and emission. 

T n0(ν )

n1(ν ) n1(ν )
n0(ν )

= e−hν /kBThν

n1(ν ) / n0(ν ) = e
−hν /kBT

n1
n0

Absorption dn0
dt

= −A(ν )n0I(ν ) ;
dn1
dt

= A(ν )n0I(ν )

Spontaneous
emission

n1
n0

dn0
dt

= B(ν )n1 ;
dn1
dt

= −B(ν )n0

Rate proportional
to I(n) 

Rate independent of I(n)

Assuming detailed balance between absorption and spontaneous emission yields: 

dn0
dt

= −
dn1
dt

= −A(ν )n0I(ν )+ B(ν )n1 = 0 I(ν ) = B(ν )
A(ν )

×
n1
n0

= B(ν )
A(ν )

e−hν /kBT

This is Boltzmann’s law, not Planck’s: Einstein understood that a process is missing to 
understand the thermal equilibrium of radiation

The effect of light absorption and spontaneous emission on 
atoms thermal equilibrium: detailed balance
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Stimulated emission and detailed balance

dn0
dt

= A(ν )n1I(ν ) ;
dn1
dt

= −A(ν )n0I(ν )
n1
n0
A process symmetrical to absorption

The detailed balance then becomes: 

dn0
dt

= −
dn1
dt

= −A(ν )n0I(ν )+ B(ν )n1 + A(ν )n1I(ν ) = 0
absorption Spontaneous emission Stimulated emission

I(ν ) = B
A
(ν )×

n1(ν )
n0(ν )− n1(ν )

= B
A
(ν )× 1

ehν /kBT −1

which allowed Einstein to recover the T dependence of Planck’s law: 

We will justify in a later lecture the expression of the prefactor B(v)/A(n) which is independent of 
T. At this point, it is simply obtained by comparing the expression of I(n) with Planck’ s law.  

Light between mirrors amplified by excited
atoms. The radiation noise increases to the 

point of self-oscillation and a fraction of 
light escapes through output mirror:                                      

laser beam (photons ‘’in step’’)

Atomic excitation

Stimulated emission announces the laser

Absorption of photon 
and excitation of atom

g e

Spontaneous
emission and    
atom’s deexcitation

Stimulated emission: a photon 
impinging on excited atom stimulates
the emission of an identical photon

Stimulated emission is a light amplifying process. For amplification to overcome absorption, atoms
should be out of thermal equilibrium with excited state more populated than ground state     

(population inversion:  « negative temperature »)

First Laser in 
1960 

preceded by 
Maser in 1954 

Stimulated emission manifests tendency of photons to accumulate in same mode

The three atom-photon interaction processes
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Classical light (sun, lamps): atoms 
emit spontaneously fields with 
randomphases and directions

Laser light: atoms are 
stimulated to emit 

photons “in step” with 
same phase, frequency 

and direction:   
“Tamed Light”

Laser light vs classical light

Bose recovers Planck’s law by postulating the 
indistinguishability of photons (1923)

S.Bose
(1894-1974)

Bose computed the entropy of an ensemble of photons considered
as a gas of indiscernable particles in a box, using a counting of 
configurations different from the one used by Boltzmann in his
description of a classical ideal gas. Bose then recovered Planck’s
law, which vindicated his counting procedure for light quanta. 

Bose sent his paper to Einstein who helped him publishing it. Einstein  had the 
idea to extend Bose statistics to a material gas of identical atoms. The 
calculation revealed the possibility of a new quantum phase of matter: the Bose-
Einstein condensate (BEC) which, like the laser, had to wait for many decades
before beeing experimentally realized.                                                                          
Stimulated emission and Bose statistics both reveal the tendency
of photons to be gregarious, to accumulate in the same quantum 
state. This property extends to material particles called Bosons.
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Bose-Einstein statistics and gregarious Bosons
Consider N=2 particles distributed in g=2 boxes. How many configurations possible?

Distinguishabe:
4 configurations

Undistinguishable:
3 configurations

In the higest entropy (most disorded) state all 
configurations are equiprobable. The probability
to find the 2 particles in the left box is 1/4 for 
classical particles and 1/3 for bosons.

The generalization to N > 2 is straightforward: 

Probability to find N  particles in box n°:1:

Numerable particles: Bosons

1/ 2N

After partitioning a gas of N particles in two equal volumes, it is 2N/(N+1) more 
probable to find all of them in one side if their are undistinguishable bosons than
(numerable) particles. For N=30, the probability enhancement is about 35,000,000 ! 

1
N +1

A reminder about the number of permutations of N objects

The number of (ordered) permutations of N objects is: 

N != 1× 2× 3×!× (N −1)× N
There are N possibilities to chose the first object, then N-1 to chose the second 
and so on…

The factorial of N noted N! increases exponentially with N. A good approximation 
of N! is given by Stirling formula: 

Log(N !) ≈ NLog(N )− N + 1
2
Log 2πN( )+!

N !≈ (N / e)N 2πN
Or in logarithmic form: 
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Suppose we display  N distinguishable
objects in  g boxes created by g-1 
distinguishable partitions a,b,c,d…. (in figure 
N=7 and g=5). The number of permutations 
of the objects + partitions is: 

(N + g −1)!

a c b d

If the partitions are undistinguishable, 
the number of arrangements is divided
by (g-1)! (here 24)

If the objects are also undistin-
guishable, the number of 
arrangements must again be
divided by N!. Finally, the number
of states available to N 
undistinguishable particules 
occupying g boxes is

(N + g −1)!
N !(g −1)!

2 4
3

1
5 7 6

2  a  c  4  3  1  b  5  7  d  6

(For N=7 and g=5 one finds 330 
states). 

Number of ways to distribute N undistinguishable particles
in g boxes

Bose derivation of Planck’s law
Photons energies are labelled by index i. The number of photons with this energy
is Ni. There are gi modes degenerate with the same energy. The average number
of photons per mode is thus ni=Ni/gi. 

Wi =
Ni + gi −1( )!
Ni !(gi −1)!

The number of configurations of Ni identical
photons distributed in gi boxes is given by the 
simple counting argument of the previous slide: 

And the total number of configurations of 
the photon gas is: 

W = Wi =
i
∏ Ni + gi −1( )!

Ni !(gi −1)!i
∏

The entropy of the photon gas is:

S = kBLogW = kB
i
∑ (Ni + gi −1)Log Ni + gi −1( )
− (Ni + gi −1)− NiLogNi + Ni

− gi −1( )Log gi −1( )+ gi −1( )

kBδ LogW = kb
i
∑ δNi Log(Ni + gi −1)− LogNi[ ]

= kb Log Ni + gi
Nii

∑ δNi

and the variation of the entropy for small changes dNi: 

The entropy S = kBLogW is approximated using
Stirling formula for large integers:

Log(n!) ! nLogn − n



18/02/2022

16

To find the photon gas thermal equilibrium, 
Bose calculated the minimum of its free 
energy :

by solving the equation dF=0 for small
variations dNi: 

δF = δNi
i
∑ ε i − kBTLog

Ni + gi
Ni

⎡

⎣
⎢

⎤

⎦
⎥ = 0

Ni =
gi

eεi /kBT −1

F = E −TS = Niε i
i
∑ − kBTLogW

which yields: 

Bose derivation of Planck’s law (continued)
and finally replacing ei by hn and gi
by the number g(n)dn of modes per 
unit volume between frequencies n
and n+dn:

g(ν )dν = 8πν
2

c3
dν

Bose retrieved Planck’s law for the 
thermal field spectral distribution:

This result validates Bose’s method of configurations’ counting.                                   
He would not have found Planck’s law by counting photons as distinguishable

particles, like Boltzmann did for atoms

I(ν )dν = hνNνg(ν )dν

= 8πhν
3

c3
1

ehν /kBT −1

Einstein extends Bose statistic to a gas of identical atoms
Einstein considered an ideal gas of N identical (undistinguishable) atoms in a box of 
volume V, in thermal equilibrium at temperature T with the box walls. 

The Bose calculation is valid, with a supplementary condition. While the total 
number of photons in thermal gas is free to vary, the total number N of atoms in 
the box is fixed, which adds a constraint to the minimization procedure of the gas
free energy. Using the method of Lagrange multipliers, Einstein expressed the 
minimum of the free energy conditioned by the constraint by the equation: 

δF − µδN = δNi
i
∑ ε i − kBTLog

Ni + gi
Ni

⎡

⎣
⎢

⎤

⎦
⎥ − µ δNi = 0

i
∑

where the Lagrange multiplier µ, called the gas chemical potential, is a temperature
dependent negative quantity with the dimension of an energy, determined by norma-
lization. Solving this equation yields a result which coïncides with Bose’s for µ=0: 

Ni =
gi

e(εi−µ )/kBT −1
The particles obeying this statistics, whether they are massless particles like
photons (with µ=0) or massive atoms (with µ < 0) are called bosons.
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The Bose-Einstein condensation

Ni = gi
z

eεi /kBT − z

z = eµ/kBT

Take the non-degenerate ground state as origin of 
energy and call N0 its occupation number:  

ε0 = 0 ; g0 = 1

N0 =
z

1− z
z = N0

N0 +1
<1

µ < 0

As T decreases, z goes from 0 to 1 and N0
increases. Let us separate N0 from the occupation 
number of all the excited states: 

N = N0 + gi
i≻0
∑ z

eεi /kBT − z
Introduce now the gas fugacity: 

N − N0 ≤ Nmax = gi
i>0
∑ 1

eεi /kBT −1

N-N0 is an increasing vs z function, 
bounded by its value for z=1: 

N = Ni = gi
z

eε i /kBT − zi
∑

i
∑

z is defined by the normalization condition: 

For an ideal gas in a 3D volume V, Nmax is a 
finite number. If for a fixed V and T the 
number N of atoms is increased above Nmax
the gas cannot accomodate the extra atoms
in the excited states  i > 0 whose population 
is saturated. All excess atoms have to go in 
the ground state whose population N0 can
increase to infinity as z approaches 1: the 
fraction of atoms in the ground state 
increases indefinitely.

Instead of varying N at V,T fixed, consider to 
decrease T at N and V fixed. When Nmax, which is a 
monotonous function of T,  decreases and reaches N, 
the atoms start to leave the saturated gas phase and 
fall in the ground state: this is the phenomenon of  
Bose-Einstein condensation. The threshold
temperature TC satisfies the condition:  

Threshold Temperature of Bose Einstein Condensation

The index i is replaced by the continuous momentum p of 
the atoms and the sum by an integral over p. The number
of states with momentum comprised between p and p+dp
is equal to the phase-space volume 4pp2Vdp divided by 
the volume of an elementary cell h3. Hence:  

gi
i
∑ → V

h3
4π p2 dp∫ ; ε i →

p2

2m

The relation between the gas density N/V and 
the threshold temperature Tc was obtained by 
solving the implicit equation: 

After a few mathematical steps, Einstein 
obtained: 

N /V = 2.61×
mkBTc
2π!2

⎡

⎣
⎢

⎤

⎦
⎥

3/2

The Bose Einstein condensation, predicted in 
1924 by Einstein, had to wait for 71 years to be
observed in 1995 in a gas of ultracold Rubidium 
atoms. In today’s Bose Einstein Condensates,  N 
is typically 105 to 106 and V of the order of a 
few µm3. The threshold temperature is in the 
range of 10-7 K. 

To quantize the phase space in units of h3 was an intuitive 
step for Einstein (note that the quantum of action has the 
dimension of a momentum x a distance). The justification of 
this quantization would become clear when de Broglie will
introduce the concept of matter waves (lecture 5). 

N = gi
i>0
∑ 1

eε i /kBTC −1

N = V
h3

4π p2dp
exp( p2 / 2mkBTC )−10

∞

∫
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First Bose-Einstein Condensate
experiment

(Wieman and Cornell,1995) 

Tc
Tc

Tc0.5Tc
Fraction of condensed atoms vs 

temperature (theory)

N0
N

T < Tc
T = Tc

T > Tc

See in later lecture

Fermi-Dirac statistics and Fermions
In 1925, one year after the BEC paper, W.Pauli postulated that electrons obeyed to an exclusion 
principle which forbids more than one particle to occupy a given quantum state. This principle was
generalized a few years later by Dirac and Fermi to the family of particles called Fermions.
Instead of having -like bosons -a tendency to accumulate in the same state, fermions must be
alone in a given quantum state. We will come back to the difference between bosons and fermions 
later. It is interesting to note that the caracteristics of Bosons and Fermions were guessed even
before the wave nature of matter particles was firmly established. The distribution of fermions 
among energy states is obtained by a statistical argument similar to the one developed for bosons. 
Let us call Ni the number of particles with energy ei and gi the degeneracy of this energy level. 
Counting the number of configurations of identical fermions obeying the exclusion principle we get (see
demonstration on next slide): 

Calculating the Fermion distribution proceeds as for bosons, with an important sign change at the end:

S / kB = Log Wi
i
∏⎛⎝⎜

⎞
⎠⎟
= giLog gi − NiLogNi − (gi − Ni )Log(gi − Ni )( )

i
∑

δ Ei −TδSi = ε i − µ + kBTLog
Ni

gi − Ni

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δNi = 0

Ni
gi − Ni

= e(µ−ε i )/kBT → Ni = gi
1

e(ε i−µ )/kBT +1

Wi =
gi !

Ni !(gi − Ni )!
gi ≥ Ni

Minimize then the free energy with the constraint that N is conserved (introducing as for Bosons 
the chemical potential µ as a Lagrange multiplier): 
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Number of ways to chose N boxes out of an ensemble of g 
boxes, placing no more than one particle per box  

According to Fermi-Dirac statistics, the number of states available must be
larger or equal to the number of particles for each energy state (in this figure,  
g=5 and N=3). Counting the number of configurations amounts to counting the 
number of ways to pick N boxes out of g. There are g ways to pick the first box, 
g-1 ways to pick the second,etc g-N+1 to pick the Nth one. This gives g!/(g-N)! 
choices. This procedure counts many times the same configuration since the order
in which each box is chosen does not matter. We should thus divide by the number
of permutations among the N chosen boxes and finally:  W = g!/N!(g-N)!

In the example of the figure, W= 10

Ideal Boson and Fermion gases at T=0K (non interacting atoms)

Ni
gi

= 1
e(ε i−µ )/kBT −1

µ(T ) < 0

Ni>0 T→0⎯ →⎯⎯ 0

Ni
gi

= 1
e(ε i−µ )/kBT +1

µ(T ) > 0

1 for ε i ≤ µ(0)

0 for ε i > µ(0)

N0 T→0⎯ →⎯⎯ N
Ni
gi

T→0⎯ →⎯⎯

Bosons Fermions

Ni
gi

T→0⎯ →⎯⎯

All states occupied by one 
particle up to Fermi energy eF. 
All states above eF empty

ε F = µ(0)Ground state occupied by atoms.
All states above are empty

ε F
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High T limit of Bose-Einstein and Fermi-Dirac statistics

For kBT>> |µ-ei|, the Bose-Einstein and Fermi Dirac distributions  both tend 
toward the Boltzmann one: 

The indistinguishability of atoms is thus a quantum effect which becomes less and 
less pronounced when temperature increases. For a given system, there is a 
temperature range above which the statistical quantum effects are negligible and 
the classical numbering of particles becomes legitimate. This feature has become
clear when the concept of de Broglie wavelength for material particles was
introduced in the year following the Bose-Einstein calculation (see next lecture).  

:

. 

gi
Ni =

gi
e(ε i−µ )/kBT ∓1

= gi
e(µ−ε i )/kBT

1∓ e(µ−ε i )/kBT kBT≫ µ−ε i
⎯ →⎯⎯⎯ gie

(µ−ε i )/kBT = 1
Z(T )

gie
−ε i /kBTNi = gie

(µ−ε i )/kBT

Concluding remarks
During the first quarter of the 20th century (1900-1925) quanta have invaded physics, involving
the description of light,  of atomic oscillations in solids and of energy atomic spectra. With the 
concept of quanta has come the realization that the ’’indiscernability ‘’of particles – photons or 
atoms - has very deep physical consequences. The notion of stimulated emission of light announced
the laser and the prediction of Bose Einstein condensation pointed to the gregarious tendency of 
Bosons to gather in the same quantum states. On the other hand, the discovery of the exclusion 
principle for electrons started to shed light on important fermionic properties of matter. 

Contrary to Relativity which was born from a simple principle, the quantum ideas emerged rather
confusely from disparate observations of phenomena unexplained by classical physics.   

In this early age of quanta, it became progressively clear that the discreteness of quantum 
phenomena manifests itself mostly at low temperatures.

The veil on quanta will be lifted in 1924-25 by the de Broglie hypothesis of matter waves, shortly
followed by the discovery by Heisenberg and Schrödinger of two consistent and equivalent
mathematical formalisms explaining under a unified picture all previous disparate observations and 
predicting new effects. We will start to describe the modern quantum theory in Lecture 5. 
During this early period of development of the quanta, Einstein played an essential role. This is
remarkable since he was during part of this time (from 1905 to 1916) heavily occupied by the 
development of the general theory of relativity. 


