"Enrico Fermi" Chair
2021/2022
Lectures at Sapienza Università di Roma, January-May 2022

A History of the Science of Light

From Galileo's telescope to the laser and the quantum information technologies

Serge Haroche,
Ecole Normale Supérieure and
Collège de France, Paris
Lecture 14. May $5^{\text {th }} 2022$

Outline of Lecture 14

Cavity QED as laboratory realization of quantum physics thought experiments

Resonant CQED experiments:
atom-photon and atom-atom entanglement, atom-photon quantum gates

Non-resonant CQED light shifts:
Quantum non demolition photon counting and observation of field quantum jumps.

CQED light shifts observed by microwave spectroscopy:
Deterministic projection of a coherent state on photon number state

Trapping one or a few photons in a box

Testing
fundamental
quantum
laws...
..and observe their interaction with one atom
The most fundamental process of light-matter coupling

Usual light detection by photoelectric effect destroys photon (Einstein, 1905):

Photon annihilated while electron jumps in state continuum:

Photon observed by detecting the escaping electron

Similar annihilation process in ordinary vision

Resonant experiments: atoms emit and absorb photons in box Non resonant experiments: no photon absorption/emission; atomic energies are light shifted by photons

Photon box

Useful vacuum Rabi pulses (quantum 《 knitting »)

The resonant regime in a very good cavity: atom-field state superpositions and entanglement

Reversible spontaneous emission and superpositions of combined
$a|e, 0>+b| g, 1>$ atom-field states

Ramsey interferometer with phase controled by field in the cavity

$P(\Phi)$

Ramsey
interferometer
$P(g)=\frac{A}{2}(1+\cos (\phi))$
Probabilities P_{e} (or $P_{g}=1-P_{e}$) for finding atom in e or g oscillate versus ϕ.

Resonant classical $\pi / 2$ pulses in auxiliary cavities $R_{1}-R_{2}$ (with adjustable phase offset ϕ between the two) prepare and analyse atom state superpositions

The phase of the atomic fringes and their amplitude depend upon the state of field in C, which affect in different ways the probability amplitudes associated to states e and g

Effect of 2π Rabi flopping on Ramsey signal

2π Rabi flopping on transition $e-g$ in 1 photon field induces a π phase shift between the g and i amplitudes
g-i fringes are inverted when photon number in C increases from 0 to 1

Ramsey fringes conditioned to one photon in

The quantum gate with photon as control bit realises a quantum non-demolition measurement (QND) of field

Control bit (photon): $a=0 / 1$

Target bit (atom): $b=0(\mathrm{~g}) / 1$ (i)

The atom carries away information about field energy without altering the photon number (2π Rabi pulse). This is very different from usual photon detection, which is destructive
M.Brune et al, Phys.Rev.Lett. 65, 976 (1990)
G.Nogues et al, Nature 400, 239 (1999)
A.Rauschenbeutel et al, Phys.Rev.Lett. 83, 5166 (1999)
S.Gleyzes et al, Nature, 446, 297 (2007)
C.Guerlin et al, Nature, 448, 889 (2007)

Qubit-oscillateur coupling: the Jaynes-Cummings Hamiltonian
$H=\hbar \omega_{q b} \frac{\sigma_{z}}{2}+\hbar \omega_{o t} a^{\dagger} a-i \frac{\hbar \Omega}{2}\left[\sigma_{+} a-\sigma_{-} a^{\dagger}\right]$

Rabi oscillation	at resonance $(\Delta=0)$
	$\| \pm, n\rangle=\frac{1}{\sqrt{2}}(\|e, n\rangle \pm i\|g, n+1\rangle)$
$\|e, n\rangle \longrightarrow \cos \frac{\Omega \sqrt{n+1} t}{2}\|e, n\rangle+\sin \frac{\Omega \sqrt{n+1} t}{2}\|g, n+1\rangle$	
$\|g, n+1\rangle \longrightarrow-\sin \frac{\Omega \sqrt{n+1} t}{2}\|e, n\rangle+\cos \frac{\Omega \sqrt{n+1} t}{2}\|g, n+1\rangle$	

Non-Resonant coupling: light shifts in CQED

Second order perturbation theory:
$E_{ \pm, n} \approx(n+1 / 2) \hbar \omega_{C} \pm \hbar\left(\frac{\Delta}{2}+\frac{\Omega^{2}(n+1)}{4 \Delta}\right)$
Energy shift due to off-resonant
coupling (distance between
energy level and asymptot):

$$
E_{+, n}-E_{e, n} \approx \hbar \frac{\Omega^{2}(n+1)}{4 \Delta}+\ldots ;
$$

$E_{-, n}-E_{g, n+1} \approx-\hbar \frac{\boldsymbol{\Omega}^{2}(n+1)}{4 \Delta}+\ldots$
Vacuum shift (Lamb-shift):
$\delta_{g, 0}=0 \quad ; \quad \delta_{e, 0}=E_{+, 0}-E_{e, 0} \approx h \frac{\Omega^{2}}{4 \Delta}$
Light shift induced on eg transition by n-photons:

$$
E_{+, n}-E_{-, n-1}=\hbar \omega_{e g}+\hbar \frac{\Omega^{2}}{2 \Delta} n+\ldots \rightarrow \delta\left(\omega_{e g}\right)=\frac{\Omega^{2}}{2 \Delta} n \quad ; \quad \varphi_{0}=\frac{\Omega^{2} t}{2 \Delta} \quad \begin{gathered}
\varphi_{0}=\text { Phase shift per } \\
\text { photon accumulated } \\
\text { during time }+
\end{gathered}
$$

Principle of QND photon counting with Ramsey interferometer
 A non-resonant atom undergoes a

 light-shift proportional to the photon number N, with opposite signs for levels e and g

The circular Rydberg atom dipole is like the hand of a clock whose rotation is perturbed by the light shift produced by the photons in C
A non-resonant atom undergoes a light-shift proportional to the photon number N, with opposite signs for levels e and 9
This effect produces a phase shift of the atomic dipole when the atom crosses the cavity:

$$
\Delta \Phi(N)=N \varphi_{0}
$$

φ_{0} : phase shift per photon can exceed the value π

$$
\begin{gathered}
\Phi_{0}=\frac{\Omega_{0}^{2}}{2 \Delta} t_{\text {int }} \sim \pi-10 \pi \\
\left(\Omega_{0} / 2 \pi=50 \mathrm{kHz} ; \Delta \approx 2 \Omega_{0} ;\right. \\
\left.t_{\text {int }} \sim 5.10^{-5} \mathrm{~s}-5.10^{-4} \mathrm{~s}\right) \\
\hline
\end{gathered}
$$

0 photon
Measuring $\Delta \Phi$ amounts to a non destructive photon counting

How to realize non-destructive photon counts in cavity QED?

Use information carried by slighly off-resonant Rydberg atoms to measure the light-shifts induced by photons. The atoms are destroyed when detected, but the photons are not (non-resonant interaction). The process is the counter part of the non-destructive detection of atoms by photon counting in ion trap or cold atom physics. Quantum jumps of photons, analogous to those of ions or atoms, are observed in the sequence of atomic events when field suddenly changes due to external processes.

How the atomic clock counts several photons

Probability to detect atom in state e or g is given by a < Ramsey fringe signal » oscillating with a phase depending upon photon number n :

The fringe phase shift measures the photon number in non-destructive way (QND).

For a given setting v_{r}, the probability for finding the atom in e (or g) takes different n dependent values.

To pin-down n, enough statistics must be accumulated in time short compared to T_{c} !

QND measurement of arbitrary photon numbers: progressive collapse of field state

A small coherent state with Poissonian uncertainty and $0 \leq n \leq 7$ is initially injected in the cavity and its photon number is progressively pinned-down by QND atoms

Experiment illustrates on light quanta the three postulates of measurement: state collapse, statistics of results, repeatability.

Counting larger photon numbers: $1^{\text {st }} a t o m$ effect on inferred photon distribution

Photon decimation process explained by measurement projection postulate

Atom prepared by $\pi / 2$ pulse in R_{1} enters cavity with field in photon number superposition state:

$$
|\psi\rangle=\sum_{n} c_{n}|e, n\rangle \xrightarrow[\pi / 2 R_{1} \text { pulse }]{ } \frac{1}{\sqrt{2}} \sum_{n} c_{n}(|e, n\rangle+|g, n\rangle)
$$

Photon number dependent phase shift in cavity (Φ_{0} : phase shift per photon):

$$
\rightarrow \frac{1}{\sqrt{2}} \sum_{n} c_{n}\left(|e\rangle+e^{i n \Phi_{0}}|g\rangle\right) \otimes|n\rangle
$$

Atom is detected after $\pi / 2$ pulse in R_{2} with adjustable phase realizing a rotation bringing transverse spin direction φ back to energy basis. This amounts to measuring the transverse spin state:

$$
\begin{aligned}
& \pm\rangle_{\varphi}=\frac{1}{\sqrt{2}}\left(|e\rangle \pm e^{i \varphi}|g\rangle\right) \\
& \xrightarrow[\substack{\text { projection along } \pm \text { transuverse } \\
\text { spin statee (direction } \varphi)}]{ } \frac{1}{\sqrt{Z_{ \pm}}} \sum_{n} c_{n}\left(1 \pm e^{i\left(n \Phi_{0}-\varphi\right)}\right)| \pm\rangle_{\varphi} \otimes|n\rangle
\end{aligned}
$$

Probability that field contains n photons after $+/$ - measurement is \times by:

$$
\frac{1}{2}\left|\left(1 \pm e^{i\left(n \Phi_{0}-\varphi\right)}\right)\right|^{2}=1 \pm \cos \left(n \Phi_{0}-\varphi\right) \quad \text { Random }+/- \text { result }
$$

A step-by-step acquisition of information

Progressive field projection on Fock state

Convergence towards $n=5 \quad$ Convergence towards $n=7$
Evolution of the inferred photon number distribution along independent sequences measuring an initial coherent state with photon numbers comprised between 0 and 7:
«God plays dice»

Evolution of the photon number probability distribution in a long measuring sequence

Expectation value of photon number along a long measuring sequence: stochastic trajectory

Other trajectories
It takes some time for atoms to
recognize that a jump has occured.

Four trajectories following a projection in $n=4$ A fundamentally random process (step durations fluctuate from one realization to the next one and only the statistics can be computed)

A statistical analyzis of trajectories: averaged evolution recovers classical field decay

Analyzis of an ensemble of trajectories starting from the same initial coherent state: Probability $\Pi(n, t)$ for finding n photons at time \dagger obtained by averaging thousands of measurements

Left: $\Pi(n)(n=0$ to 7$)$ versus \dagger for an initial coherent state with <n>=3.5. full lines: experiment, dotted lines: theory. The blue bar at $t=0$ indicates duration of initial QND measurement.

Right: Histograms $\Pi(n)$ at times indicated by the 3 vertical lines of left figure. Blue line: theory. The photon number distribution remains Poissoniian during field damping. Experiment shows that photon number state |n> has a life-time T_{c} / n.

Left: Evolution of the mean photon number: the average of the «stair case» trajectories yields a smooth classical exponential field decay, without visible quantum jumps. (Brune et al, PRL 101, 240402 (2008))

Use light shifts to project photon number in cavity

Does cavity contain no photons or not?
Amounts to measuring the projector on $\left|n_{0}\right\rangle$
Observable with eigenvalue 1 if n_{0} photons, 0 otherwise
How to do it with a single atom?
Perform high resolution spectroscopy of atom-cavity system resolving in one shot single photon light shifts

Atom-cavity spectrum on the 51c -52c
 transition (Cavity detuned by Δ from 51c-50c transition)

Cavity photons shift level 51c but not 52c

If microwave is properly tuned, atom prepared in 52 c is transferred by microwave to 51 c only if n_{0} photon in cavity.
Requires high resolution, hence long interrogation time $t_{m w}$ (cold atoms)
$\frac{\Omega^{2} t_{m w}}{4 \Delta}>1$

Probing system with this precision requires long time and slow atoms....

Electrodes to generate circularly polarized rf

Cavity QED set-up with a vertical atomic beam

An atomic fountain fed by atoms cooled in a MOT. Atoms spend several milliseconds in cavity at top of parabolic trajectory

Circular Rydberg states are prepared in cavity by circularly polarized radiofrequency photons

Transfer 52c to 51c versus microwave frequency exhibits resolved photon numbers from 0 to 6 (coherent field in cavity)

Energy shift versus photon number

Photon number

Photon number filter

Atom, initially in 52 c with cavity containing coherent field and detuned by Δ from 51c-50c frequency is irradiated during 0.3 ms by mw at $\omega_{52 \mathrm{c}-51 \mathrm{c}}\left(\mathrm{n}_{0}\right)$ frequency.

If atom detected in $51 \mathrm{c}, \mathrm{n}_{0}$ photon are selected in cavity
To prove it, set cavity to resonance ($\Delta=0$) during variable time t before detecting atom in 51 c and record Rabi

Rabi oscillations after selection of n_{0} photons by same atom ($n_{0}=0$ to 4)

(PhD of Frederic Assemat)

Conclusion of Lecture 14

In this lecture, we have described resonant and non-resonant interaction processes between atoms and photons in the strong coupling regime of CQED

Using resonant coupling, we have seen how to entangle atoms via their successive coupling with the cavity field containing 0 and 1 photon and how to realize a quantum gate with the photon as a control and the atom as a target bit.
In the non-resonant case, we exploit photon number dependent light shifts to count photons in the cavity without destroying them (Quantum non demolition detection), to observe field quantum jumps and to filter pure photon number states out of coherent fields.
In the last lecture, we will see how to use the non-resonant atom-field interaction to generate and study superpositions of coherent fields with different phases (so called «Schrödinger cat states ») and we will study their decoherence. We will finally describe briefly how CQED has been generalized in circuit-QED to the study of the coupling of superconducting qubits to microwave fields, a very active domain of research today in quantum information science.

