Spontaneous photonic lattices and non-linear waves in disordered ferroelectrics

PhD Student: Mariano Flammini
Supervisor: Prof. Eugenio Del Re
Summary

- Diffraction
- Photorefractive Effect
- Relaxors
- Optical Spatial Soliton
- Scale-Free Optics
- Super-Crystals
- Anomalous Birefringence
- Nonlinear Bessel Beam
- Knife-Edge Super-Resolution
Diffraction

• Depends on wavelength λ

• Limits the resolution of an optical system to $\frac{\lambda}{2NA}$

• Is a property of propagating waves also in vacuum

$$i \partial_z A + \frac{1}{2k} \nabla^2 A = 0$$

Linear Helmholtz equation

M. G. L. Gustafsson, *J. Microsc.* 198, 82-87 (2000)
Diffraction

- Depends on wavelength λ
- Limits the resolution of an optical system to $\frac{\lambda}{2NA}$
- Is a property of propagating waves also in vacuum

\[i\partial_z A + \frac{1}{2k} \nabla_{\perp}^2 A = 0 \]

Linear Helmholtz equation

But it can be overcome:

\[i\partial_z A + \frac{1}{2k} \nabla_{\perp}^2 A + \frac{k}{n} \Delta n A = 0 \]

Nonlinear Helmholtz Eq. (NLSE)

Photorefractive Effect

Nonlinear optics effect which modifies locally the material refractive index because it generates a spatial electric field E_{sc} due to the generation of impurities photoexcitation.

$$\Delta n_{PR} = -\frac{1}{2} n^3 g_{eff} \epsilon_0^2 (\epsilon_r - 1)^2 E_{sc}$$

Saturable Kerr nonlinearity

$$E_{sc} = \frac{E_0}{(1 + I/I_B)}$$

Relaxors are complex ferroelectrics, it means that they have a compositional disorder whereby an element in the unitary cell is randomly replaced with another.

Optical transparency due to the sub-wavelength dimension of PNRs
Optical spatial solitons

Stationary solutions of NLSE when a nonlinearity compensates the diffraction

\[
\frac{\partial \tilde{A}_\omega}{\partial z} + \frac{i}{2k} \nabla^2_{\perp} \tilde{A}_\omega = -i k \frac{\Delta n(I)}{n_o} \tilde{A}_\omega
\]

and, for 1D beam:

\[A(x, z) = u(x)e^{i r z} \sqrt{I_b}\]
This effect allows the propagation of sub-wavelength beam

\[i \partial_z A + \frac{1}{2k} \nabla^2 A + \frac{k}{n} \Delta n A = 0 \]

\[\Delta n_{SF} = -\frac{n}{k^2} \left(\frac{L(\alpha)}{\lambda} \right)^2 \frac{\nabla I}{4I^2} \]
A spontaneous 3D lattice with a lattice constant that is more than 10^4 times larger than that of the underlying perovskite 1D lattice

The samples composition varies slightly along the growth axis due to periodic change of growth temperature. The periodic composition causes a periodic modulation of the linear and nonlinear optical response.

New photorefractive nonlinear lattice that disappears in time

INPUT
Lattice nonlinearity deactivated

OUTPUT
Lattice nonlinearity deactivated

OUTPUT
Lattice nonlinearity activated ($t=0$)

OUTPUT
Lattice nonlinearity activated (Steady State)

PhD Student: Mariano Flammini

Anomalous Birefringence

Different hysteresis are observed for different orientations when an external bias field is applied on the sample.

Stokes Parameters

Malus Law Violation

Anomalous phenomena with some depolarization effect for zero external bias field.
Nonlinear Bessel Beam

Bessel Beam equation:

\[E(r, \phi, z) = A_0 \exp(ikzz) J_n(k_r r) \exp(\pm in\phi) \]

Propagation in photorefractive crystal

Spatial Light Modulator (SLM) with intensity mask.
It works in Fourier Transform configuration

KNTN with electrodes
Lens
Polarizer
SLM

PhD Student: Mariano Flammini
Knife-edge super-resolution

It is a kind of nonlinear imaging which needs at least two photons to reconstruct an image with subwavelength details.

\[I(x, z) = -\int_{\mathbb{R}} I(u, z) \frac{d}{dx'} \theta(u - x') du \]

The experiments, conducted at THz frequencies, thanks to a collaboration with Prof. M. Ortolani, allow to explore easily the near-field.
Characterize the super-crystal samples:
- Understanding the importance of the crystal growth method and composition in the formation of the super-crystal;
- Linking the role of the PNRs with the properties of the super-crystal;
- Highlighting the influence of an applied electric field on the super-crystal;

Study the propagation of nonlinear waves:
- Controlling the shape and intensity of optical beams (especially using SLM);
- Investigating the interaction of super-crystals and nonlinear waves;
- Exploring new nonlinear phenomena in 3D photonic bandgap.

Collaborations:
- A. J. Agranat at Hebrew University of Jerusalem
- G.B. Parravicini at University of Pavia