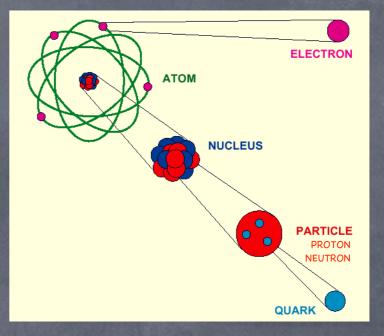
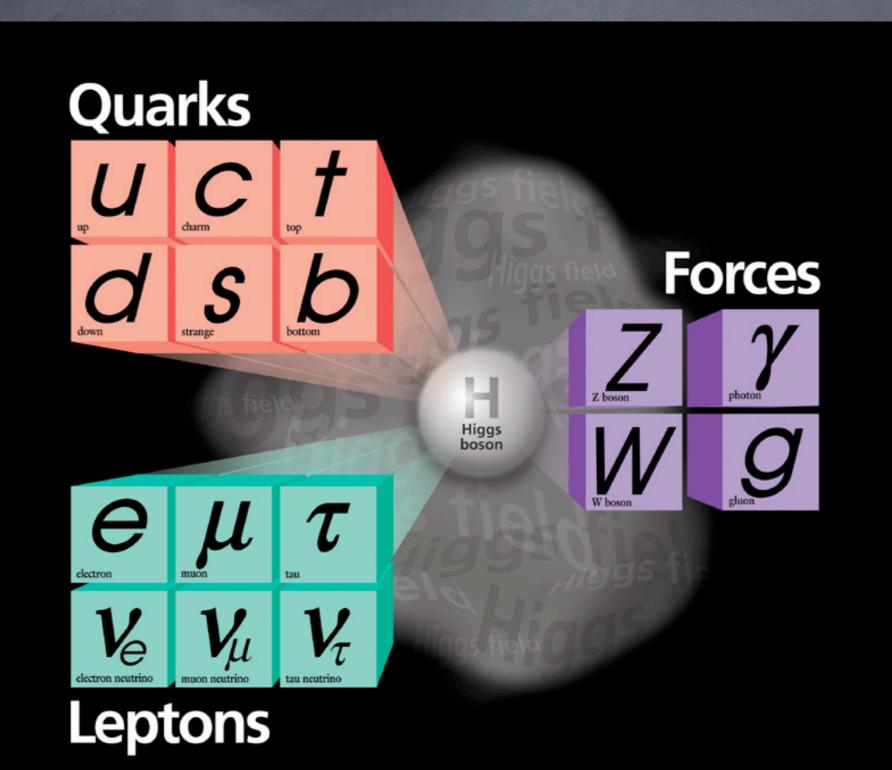

M.Nardecchia Università Sapienza & INFN Roma 22/09/2023

Fundamental Interactions: Theory and Experiment

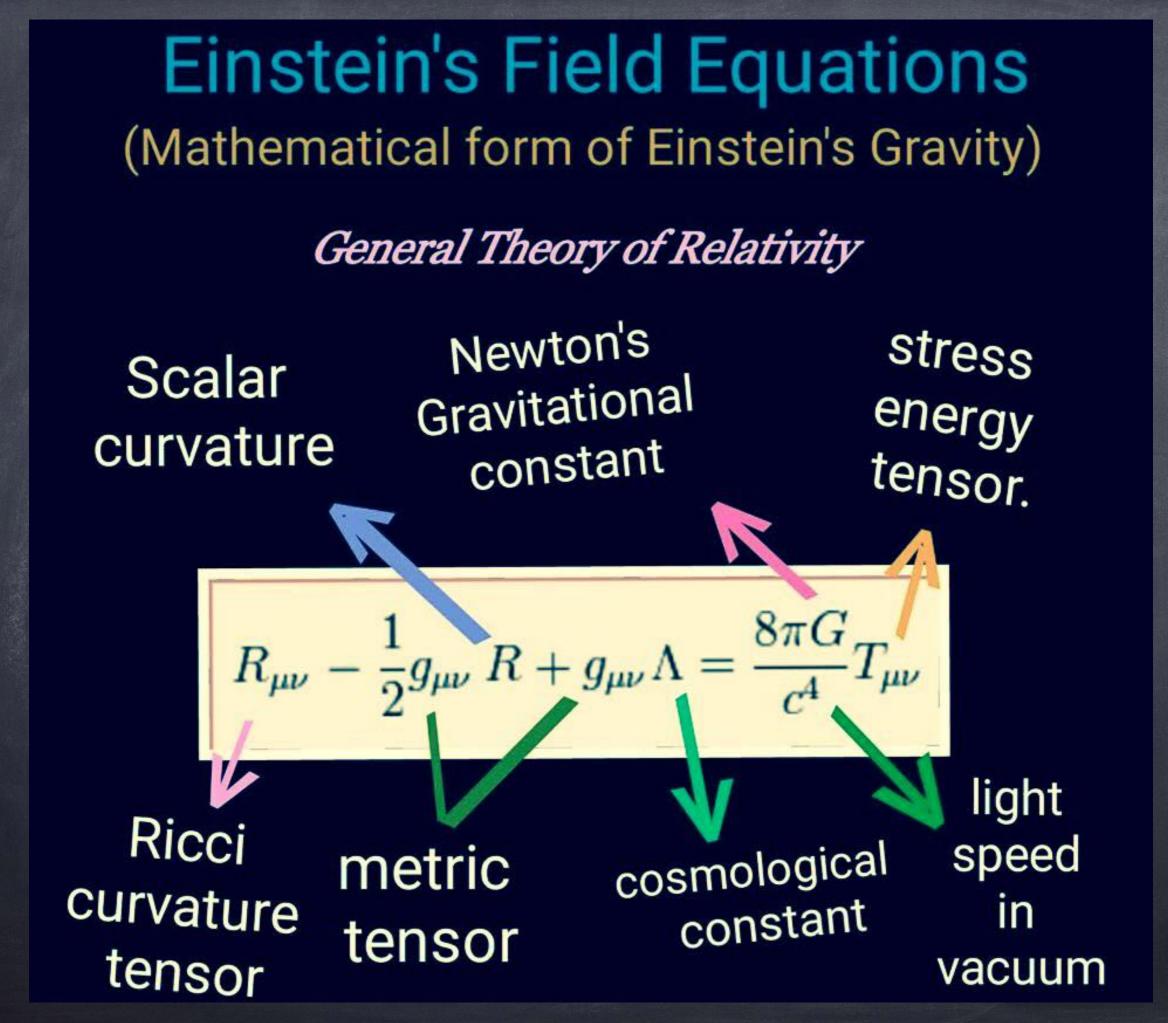


"Fundamental" Physics

What are the basic, elementary building blocks of matter (no inner structure, no smaller components)?


0

 What are the forces controlling their behaviour at the most basic level? (elementary forces)


Can nature be understood in terms of a few basic principles, the "theory of everything"?

In Summary

Is the SM the whole story?

- Experimental "problems" of the SM:
 - Gravity
 - Dark matter
 - Baryon asymmetry
- Experimental hints of physics beyond the SM
 - Neutrino masses
 - Quantum number unification
- Theoretical puzzles of the SM:
 - @ <H> << Mpl
 - Family replication
 - Small Yukawa couplings, pattern of masses and mixings
 - Gauge group, anomaly cancellation, charge quantization, quantum numbers
- Theoretical problems of the SM:
 - Hierarchy or Naturalness problem
 - Cosmological constant problem
 - Strong CP problem

Gravity & Fundamental Physics

Several of the deepest questions in fundamental physics involve gravity:

The nature of gravity. Is Einstein (still) right? What building-block principles and symmetries in nature invoked by General Relativity (GR) can be challenged? Are there extra fields involved in the gravitational interaction?

► The nature of neutron stars. How does nuclear matter behave in the extreme conditions of the inner core of neutron stars? Does exotic physics show up in these objects?

• The nature of black holes. How well classical GR BHs describe observations? Do more exotic species of compact stars exist? Signatures of quantum gravity near event horizons?

► The nature of dark matter. Is dark matter composed of particles, dark objects, or modified gravity? Can we detect or constrain dark matter and the early universe using GWs?

Virgo Interferometer

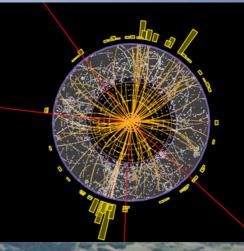
1000VIRGD

DarkSide @ Laboratori Nazionali del Gran Sasso

Il Large Hadron Collider (LHC): il più potente collisore di protoni

HCb-

circonferenza = 27 km


SUISSE

FRANCE

CMS

due fasci di protoni che viaggiano in senso opposto e collidono in quattro punti lungo l'anello:

CERN Prévessin

ICE

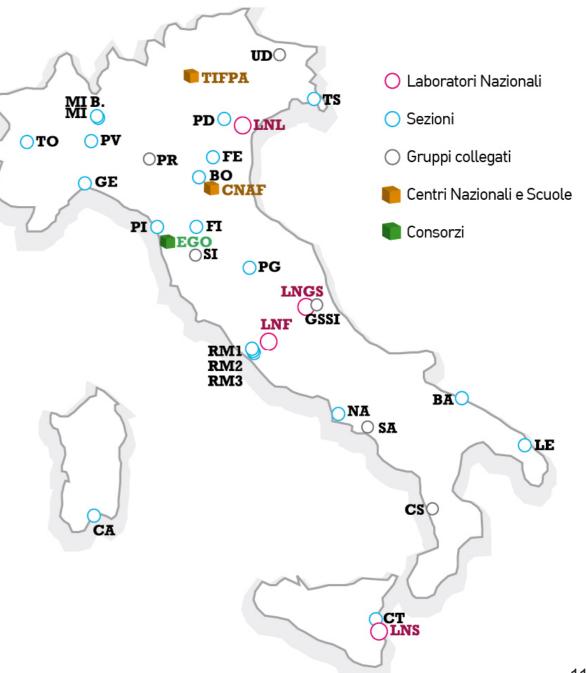

CERN Meyrin

7 km

protoni accelerati ad una velocità pari al 99.99999% di quella della luce

ATLAS

Dipartimento di Fisica -> Ricerca -> Scientific Report



List of research activities	16
Astronomy, Astrophysics and Geophysics	23
Introduction	24
Research activity	29
Biophysics, Medical Physics, and Cultural Heritage	47
Introduction	48
Research activity	49
Condensed matter physics and biophysics:	55
Introduction	56
Research activity	
Particle physics and Fundamental Interactions	97
Introduction	98
Research activity	
Statistical and Mathematical Physics	161
Introduction	62
Research activity	

FIstituto Nazionale di Fisica Nucleare (INFN)

- INFN is the Italian research agency dedicated to the study of the fundamental constituents of matter and their interactions.
- The research activities presented here are mainly founded by INFN. Research groups include both University and INFN staff.
- INFN divisions are located in the Physics Departments (web site of Rome division).
- Availability of master thesis in national/ international laboratories and in international collaborations.
- PhD school on Accelerator Physics

Istituto Nazionale di Fisica Nucleare

CONCORSO PER IL CONFERIMENTO

DI N. 5 BORSE DI STUDIO PER ATTIVITA' DI FORMAZIONE SCIENTIFICA

PER STUDENTI UNIVERSITARI

https://jobs.dsi.infn.it

Fundamental Interactions curriculum, practical guide

	Curriculum Fundamental Interactions : Theory and Experiment							
N.	Insegnamenti	CFU	anno	sem.	SSD	eng	ambito	
1	Introduction to Quantum Field Theory	6	1	1	FIS/02	Y	caratt.	
2	Condensed Matter Physics	6	1	1	FIS/03	Y	caratt.	
3	Physics Laboratory I (propedeutic teaching to Physics Laboratory II)	6	1	1	FIS/01	Y	caratt.	
4	Group Theory in Mathematical Physics	6	1	1	MAT/07	Y	affint.	
5	Theory of Fundamental Interactions	6	1	2	FIS/02	Y	caratt.	
6	Particle Physics	6	1	2	FIS/04	Y	caratt.	
7	Physics Laboratory II	9	1	2	FIS/01	Y	caratt	
8	English language	4	1	2		Y	AAF	
9	Elective (within group A)	6	1/2	1/2	FIS/01	Y	caratt.	
10	Elective (within group B)	6	1/2	1/2	FIS/02- 05	Y	affint.	
11	Elective (within group C)	6	1/2	1/2		Y	affint.	
12	Elective (free choice)	6	1/2	1/2		Y		
13	Elective (free choice)	6	1/2	1/2		Y		
14	Internship	3	2	1		Y	AAF	
15	Thesis Project	38	2	2		Y	AAF	

CFU = number of credits

SSD: Settore Scientifico Disciplinare

- FIS: Physics course
 - FIS/01: experimental physics
 - FIS/02: theoretical physics
 - FIS/03: condensed matter physics
 - FIS/04: nuclear and subnuclear physics
 - FIS/05: astronomy and astrophysics
- MAT: Mathematics course

Three semesters. Seven compulsory courses + five optional courses.

Mandatory courses

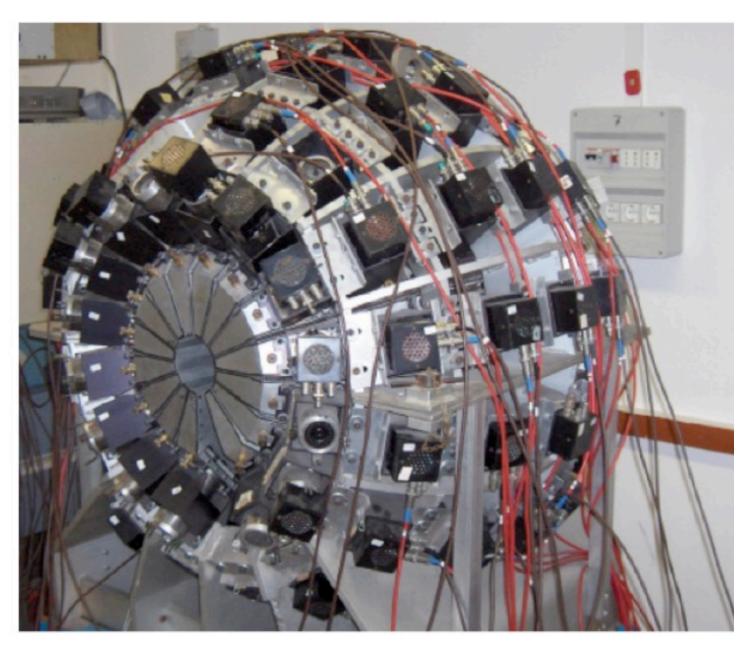
YEAR	SEMESTER	COURSE	SSD
1	1	Introduction to Quantum Field Theory (R. Bonciani or A. Polosa)	FIS/02
1	1	Condensed Matter Physics (S. Caprara or A.Polimeni)	FIS/03
1	1	Physics Laboratory I (G. Cavoto)	FIS/01
1	1	Group Theory in Mathematical Phyiscs (G. Panati)	MAT/07
1	2	Theory of Fundamental Interactions (A. Urbano)	FIS/02
1	2	Particle Physics (S. Rahatlou)	FIS/04
1	2	Physics Laboratory II (G. Cavoto	FIS/01

The real thing: the SM in one Table...

		SU(3)	SU(2)	U(1)	
	Li	1	2	-1/2	
	e ^c i	1	1	1	
$G = SU(3)_C \times SU(2)_L \times U(1)_Y$	Qi	3	2	1/6	
	u ^c i	3*			
	d ^c i	3*	1	-2/3	
and 3 lines				Y	
$\bar{\Psi}_i i \sigma^\mu D_\mu \Psi_i - \frac{1}{4} F^a_{\mu\nu} F$	αμν		gau	ıge	
$\mathcal{L}_{\rm SM}^{\rm ren} = + D_{\mu}H ^2 - V(H)$		symn	netry	break	ting
$+\lambda_{ij}\Psi_i\Psi_jH + \text{h.c.}$			flav	vor	

Theory of Fundamental Interactions (A. Urbano) Particle Physics (S. Rahatlou)

- Obiettivi 🕄

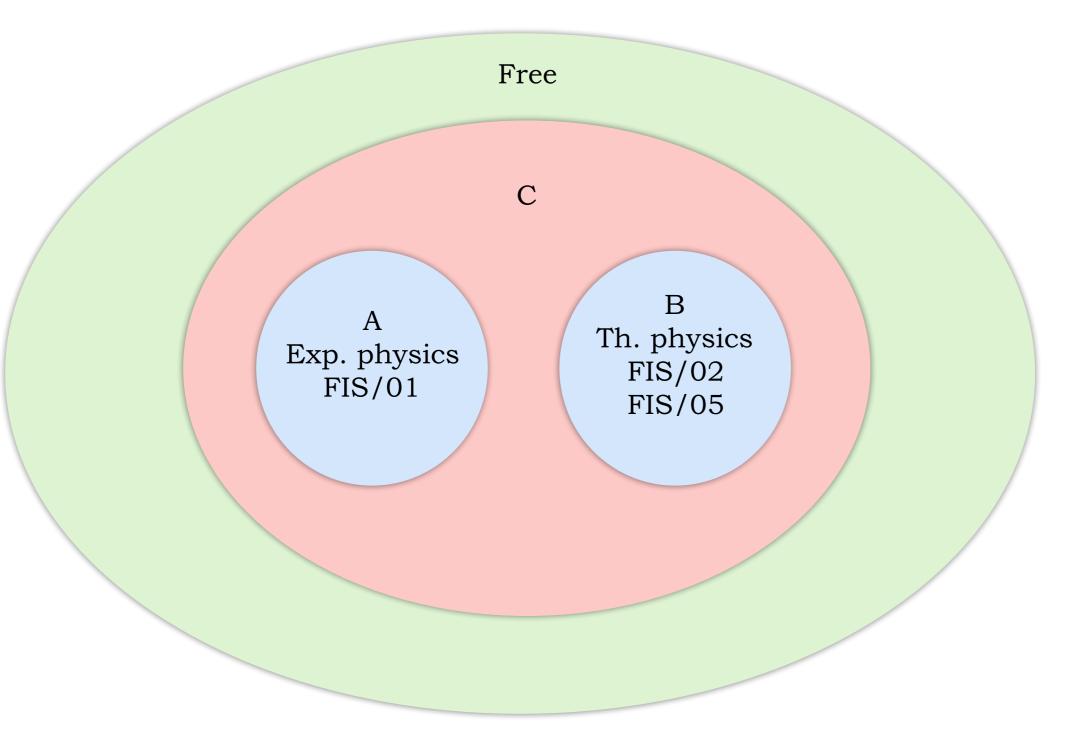

Lo scopo del corso è l'apprendimento delle evidenze sperimentali e delle metodologie che hanno condotto alla formulazione del Modello Standard (SM) della fisica delle particelle elementari, dall'inizio della disciplina negli anni 30 e 40 del secolo scorso fino alla formulazione dello SM. Il corso è strettamente legato ai corsi teorici del primo semestre e a quello annuale di Laboratorio.

Physics Laboratory I and II

- Physics Lab. I is propedeutic to Physics Lab. II. Both mandatories.
- Content of the course:
 - Interaction of radiation with matter
 - Gas, semiconductor, scintillation detectors
 - Spectrometers, calorimeters, Cherenkov counters
 - Signal formation & electronics
 - Statistics for data analysis
- In Physics Lab. II:
 - <u>Realization of a small scale</u> <u>experiment in groups of few</u> <u>students.</u>

Groups A & B

Grupp	oo A (caratt.)						
1	Detectors and Accelerators in Particle Physics	6	1	2	FIS/01	Y	
2	Methods in Experimental Particle Physics	6	1	2	FIS/01	Y	
3	Collider Particle Physics	6	2	1	FIS/01	Y	
4	Neutrinos and Dark Matter	6	2	1	FIS/01	Y	
5	Experimental Gravitation (mutuato da LM-58)	6	2	1	FIS/01	Y	
6	Medical Applications of Physics	6	2	1	FIS/01	Y	
7	Astroparticle Physics (mutuato da LM-58)	6	2	1	FIS/01	Y	
8	Solid State Sensors	6	2	1	FIS/01	Y	
Grupp	o B (affint.)						
1	General Relativity (mutuato da LM-58)	6	1	1	FIS/02	Y	
2	Neural Networks	6	1	2	FIS/02	Y	
3	Gravitational Waves, Compact Stars and Black Holes	6	1	2	FIS/02	Y	
4	Physical Cosmology (mutuato da LM-58)	6	1	2	FIS/05	Y	
5	Strong Interactions and QCD	6	1	2	FIS/02	Y	
6	Quantum Field Theory	6	2	1	FIS/02	Y	
7	Phenomenology of the Standard Model	6	2	1	FIS/02	Y	


Group C

	· · ·						
1	Computing Methods for Physics	6	1	1	INF/01	Y	
2	General Relativity (mutuato da LM-58)	6	1	1	FIS/02	Y	
3	Neural Networks	6	1	2	FIS/02	Y	
4	Advanced Machine Learning for Physics	6	1	2	INF/01	Y	
5	Computer Architecture for Physics	6	1	2	INF/01	Y	
6	Detectors and Accelerators in Particle Physics	6	1	2	FIS/01	Y	
7	Mathematical Physics	6	1	2	MAT/07	Y	
8	Methods in Experimental Particle Physics	6	1	2	FIS/01	Y	
9	Nuclear Physics	6	1	2	FIS/04	Y	
10	Gravitational Waves, Compact Stars and Black Holes	6	1	2	FIS/02	Y	
11	Physical Cosmology (mutuato da LM-58)	6	1	2	FIS/05	Y	
12	Plasma Physics and Nuclear Fusion (mutuato da LM-30)	6	1	2	FIS/01	Y	
13	Strong interactions and QCD	6	1	2	FIS/02	Y	
14	Accelerator Physics and Relativistic Electrodynamics (mutuato da LM-29)	6	1	2	FIS/01	Y	
15	Astroparticle Physics (mutuato da LM-58)	6	2	1	FIS/01	Y	
16	Collider Particle Physics	6	2	1	FIS/01	Y	
17	Experimental Gravitation (mutuato da LM-58)	6	2	1	FIS/01	Y	
18	Medical Applications of Physics	6	2	1	FIS/01	Y	
19	Neutrinos and Dark Matter	6	2	1	FIS/01	Y	
20	Quantum Field Theory	6	2	1	FIS/02	Y	
21	Solid State Sensors	6	2	1	FIS/01	Y	
22	Phenomenology of the Standard Model	6	2	1	FIS/02	Y	
23	Laser Fundamentals (mutuato da LM-29, reserved for Lascala students only)	6	1	2	FIS/01	Y	
24	Optics (mutuato da LM-29, reserved for Lascala students only)	6	1	2	FIS/01	Y	

Decision Theory

Choose in this order:
1) pick 1 from A and 1 from B
2) pick 1 from C
3) pick 2 from Free

ſ					ļ
	Particle Exp.	(4+5+3)			
	YEAR	SEMESTER	COURSE	SSD	1
	1	1	Introduction to Quantum Field Theory	FIS/02	
	1	1	Condensed Matter Physics	FIS/03	
	1	1	Physics Laboratory I	FIS/01	
	1	1	Group Theory in Mathematical Phyiscs	MAT/07	
	1	2	Theory of Fundamental Interactions	FIS/02	
	1	2	Particle Physics	FIS/04	
	1	2	Physics Laboratory II	FIS/01	
	1	2	Detectors and Accelerators in Particle Physics (Gauzzi)	FIS/01	
	1	2	Methods in Experimental Particle Physics (Di Domenico)	FIS/01	
	2	1	Neutrinos and Dark Matter (Vignati)	FIS/01	
	2	1	Collider Particle Physics (Luci)	FIS/01	
	2	1	Phenomenology of the Standard Model (Contino, Nardecchia)	FIS/02	

Particle The	eory (5+4+3)		
YEAR	SEMESTER	COURSE	SSD
1	1	Introduction to Quantum Field Theory	FIS/02
1	1	Condensed Matter Physics	FIS/03
1	1	Physics Laboratory I	FIS/01
1	1	Group Theory in Mathematical Phyiscs	MAT/07
1	1	General Relativity (Pani)	FIS/02
1	2	Theory of Fundamental Interactions	FIS/02
1	2	Particle Physics	FIS/04
1	2	Physics Laboratory II	FIS/01
1	2	Strong Interactions and QCD (Polosa)	FIS/02
2	1	Neutrinos and Dark Matter (Vignati)	FIS/01
2	1	Phenomenology of the Standard Model (Contino, Nardecchia)	FIS/02
2	1	Quantum Field Theory (Papinutto)	FIS/02

Gravity Phe	$no(5\pm 4\pm 3)$		
YEAR	SEMESTER	COURSE	SSD
1	1	Introduction to Quantum Field Theory	FIS/02
1	1	Condensed Matter Physics	FIS/03
1	1	Physics Laboratory I	FIS/01
1	1	Group Theory in Mathematical Phyiscs	MAT/07
1	1	General Relativity (Pani)	FIS/02
1	2	Theory of Fundamental Interactions	FIS/02
1	2	Particle Physics	FIS/04
1	2	Physics Laboratory II	FIS/01
1	2	Gravitational Waves, Compact Stars and Black Holes (Pani, Pannarale)	FIS/02
2	1	Experimental Gravitation (Leaci, Majorana)	FIS/01
2	1	Solid State Sensors (Bocci, Polimeni)	FIS/01
2	1	Astroparticle physics (Di Palma)	FIS/01

Gravity Th	eory (5+5+2)		
YEAR	SEMESTER	COURSE	SSD
1	1	Introduction to Quantum Field Theory	FIS/02
1	1	Condensed Matter Physics	FIS/03
1	1	Physics Laboratory I	FIS/01
1	1	Group Theory in Mathematical Phyiscs	MAT/07
1	1	General Relativity (Pani)	FIS/02
1	2	Theory of Fundamental Interactions	FIS/02
1	2	Particle Physics	FIS/04
1	2	Physics Laboratory II	FIS/01
1	2	Gravitational Waves, Compact Stars and BH (Pani, Pannarale)	FIS/02
1	2	Physical Cosmology (Melchiorri)	FIS/05
2	1	Quantum Field Theory (Papinutto)	FIS/02
2	1	Experimental Gravitation (Leaci, Majorana)	FIS/01

YEAR	SEMESTER	COURSE	SSD
1	1	Introduction to Quantum Field Theory	FIS/02
1	1	Condensed Matter Physics	FIS/03
1	1	Physics Laboratory I	FIS/01
1	1	Group Theory in Mathematical Phyiscs	MAT/07
1	1	Computing Methods for Physics (Pannarale)	INF/01
1	2	Theory of Fundamental Interactions	FIS/02
1	2	Particle Physics	FIS/04
1	2	Physics Laboratory II	FIS/01
1	2	Nuclear Physics (De Cecco)	FIS/04
1	2	Strong Interactions and QCD (Polosa)	FIS/02
2	1	Medical Applications of Physics (Patera, Saini)	FIS/01
2	1	Solid State Sensors (Bocci, Polimeni)	FIS/01

Few final remarks...

- More information about ongoing researches in the Scientific Report of Department of Physics (link).
 Pages 97-159 dedicated to particle and astroparticle physics.
- Practical infos about courses: <u>https://corsidilaurea.uniroma1.it/it/corso/</u> 2022/30055/programmazione
- Questions on the FI curriculum: irene.dipalma@uniroma1.it m.nardecchia@uniroma1.it

DEPARTMENT OF PHYSICS

January 2017-December 2019

DIPARTIMENTO DI FISICA

SAPIENZA Università di Roma