DIRECT AND INDIRECT SEARCHES OF HEAVY RESONANCES IN STRONGLY COUPLED PHYSICS BEYOND THE STANDARD MODEL

SUPERVISOR
Luca Silvestrini

CANDIDATE
Matteo Salvarezza
CONTENTS

• COMPOSITE HIGGS THEORIES: A MOTIVATION FOR HEAVY RESONANCES

• AN EXAMPLE: THE MINIMAL COMPOSITE HIGGS MODEL (MCHM)

• INDIRECT SEARCHES: ELECTROWEAK PRECISION TESTS

• DIRECT SEARCHES: OBSERVATION AT LHC
COMPOSITE HIGGS THEORIES: A MOTIVATION FOR HEAVY RESONANCES
COMPOSITE HIGGS THEORIES

- The hierarchy problem:

\[\delta M_H^2 = \left(6y_t^2 - \frac{3}{4} \left(3g^2 + g'^2 \right) - 6\lambda \right) \frac{\Lambda^2}{8\pi^2} \]

- If the Standard Model accounts for all physical phenomena except gravity:

\[\Lambda = M_P \simeq 10^{19} \text{ GeV} \]

\[M_H \sim 10^2 \text{ GeV} \]

- Experimental observation:

- Extreme fine tuning of parameters required, 1 over \(10^{34}\): naturalness problem
COMPOSITE HIGGS THEORIES

- Possible solution to the hierarchy problem: the Higgs boson is **composite**
- Virtual high-energy effects resolve its compositeness, replacing the bad SM behaviour

\[F(q^2) \]

- Role of resonances: analogy with electromagnetic corrections to the pion mass

\[\Delta M_\pi \propto \frac{\alpha}{16\pi^2} M_\rho^2 \]

So we expect new resonances also in the EW sector
COMPOSITE HIGGS THEORIES

- **Problem**: big mass gap between the Higgs and lightest resonances!

\[
\begin{align*}
M_H &= 125 \text{ GeV} \\
M_\rho &\sim \text{TeV} \\
M_\rho &> 800 \text{ GeV}
\end{align*}
\]

- Still learning from pions: the Higgs as a **pseudo Nambu-Goldstone boson** (PNGB) accounts naturally for such picture (Georgi, Kaplan, 1984)
COMPOSITE HIGGS THEORIES

• Spontaneous symmetry breaking $G \rightarrow H$ at a scale $f > v$ ($v = 246$ GeV, electroweak scale): effective lagrangian for massless NGBs

• Define the scale separation

 $$\xi = \left(\frac{v}{f}\right)^2$$

• A small term in the lagrangian also explicitly breaks G: massive PNGB

• Reproduce the SM EWSB pattern $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$
COMPOSITE HIGGS THEORIES

• **Add lightest resonances**: no rigid recipe. They will appear roughly with mass:

\[M_\ast \approx g_\ast f \approx TeV \]

• Simplifying assumption: additional sizeable mass gap between the lightest resonances and the others

\[
\begin{align*}
\Lambda & \quad \text{\textbullet\ Effective lagrangian for resonances is expected to be weakly coupled} \\
M_\rho & \quad \text{\textbullet\ Effect of heavier states is expected to be suppressed. Their mass is taken to be the cutoff of the effective theory.}
\end{align*}
\]
AN EXAMPLE: THE MINIMAL COMPOSITE HIGGS MODEL (MCHM)
MINIMAL COMPOSITE HIGGS MODEL

- Effective theory with $G = SO(5)$, $H = SO(4) = SU(2)_L \times SU(2)_R$

$\text{SO}(5) \rightarrow \text{SO}(4)$\hspace{1cm} 4 NGBs
MINIMAL COMPOSITE HIGGS MODEL

- Effective theory with $G = SO(5)$, $H = SO(4) = SU(2)_L \times SU(2)_R$

$SO(5) \rightarrow SO(4)$

Gauge group $SU(2)_L \times U(1)_Y$

The gauge group seems to be unbroken

4 NGBs
MINIMAL COMPOSITE HIGGS MODEL

- Effective theory with $G = \text{SO}(5)$, $H = \text{SO}(4) = \text{SU}(2)_L \times \text{SU}(2)_R$

\[\text{SO}(5) \rightarrow \text{SO}(4) \]

Gauge group $\text{SU}(2)_L \times \text{U}(1)_Y$

The gauge group seems to be unbroken

Interaction terms between electroweak gauge bosons and NGBs break the global $\text{SO}(5)$

- A **Higgs potential** is generated at one loop, which correctly accounts for the Higgs mass and the EWSB
- Gauge bosons become massive eating 3 NGBs, one is left as a massive PNGB, the composite Higgs boson

Phd in physics

XXXVIII cycle
Formally different approach: EWSB made manifest

The gauge group is no more a subset of the unbroken SO(4), but rather of an SO(4)' rotated by an angle θ

The gauge group is manifestly broken

The degree of misalignement θ correctly triggers the EWSB at tree level

Completely equivalent to the previous construction
MINIMAL COMPOSITE HIGGS MODEL

- Generators of SO(5):

\[\{T\} = \left\{ T^\hat{a} \in SO(5)/SO(4), T_{\theta}^{(L,R)a} \in SO(4) \right\} \]

\[\hat{a} = 1 \ldots 4, \ a = 1 \ldots 3 \]

- Usual parametrization of NGBs: massless excitations around the vacuum along broken generators

\[\Phi = \exp \left(i \sqrt{2} \frac{\pi^a}{f} T^{\hat{a}} \right) \Phi_0 \]

\[\Phi_0 = (0, 0, 0, \sin(\theta), \cos(\theta)) \]

\[T^{L,R}_{\theta} \Phi_0 = 0 \]
MINIMAL COMPOSITE HIGGS MODEL

- **Misaligned gauging:**

\[D_\mu = \partial_\mu + igW^i_\mu T^{(L)i}_0 + ig'B_\mu T^{(R)i}_0 \]

- **NGBs kinetic term:**

\[
\frac{f^2}{2}(D_\mu \Phi)^T (D_\mu \Phi) \supset \frac{1}{2} \left(\frac{1}{4} g^2 f^2 \sin^2(\theta) \right) W^i_\mu W^i_\mu \\
+ \frac{1}{2} \left(\frac{1}{4} g'^2 f^2 \sin^2(\theta) \right) B_\mu B_\mu
\]

Mass terms expected from EWSB

\[v = f \sin(\theta) \]
INDIRECT SEARCHES: ELECTROWEAK PRECISION TESTS
INDIRECT SEARCHES

- Primary reference: electroweak precision tests on e^+e^- processes at LEP (EWPT)

- Assume there are only oblique corrections:

\[\Pi_{ij}^{(H)}(q^2), \text{Heavy physics contribution} \]

- Four measurable quantities parametrize all corrections, experimentally constrained to be small (-10^{-3}):

\[\hat{S} = g^2 \Pi_{W^3B}^{(H)}(0) \]
\[\hat{T} = \frac{g^2}{M_W^2} \left(\Pi_{W^3W^3}^{(H)}(0) - \Pi_{W^+W^-}^{(H)}(0) \right) \]
\[W = \frac{g^2 M_W^2}{2} \Pi_{W^3W^3}^{(H)\prime\prime}(0) \]
\[Y = \frac{g^2 M_W^2}{2} \Pi_{BB}^{(H)\prime\prime}(0) \]

- Suitable new physics models must provide small S, T, W, Y in some region of their parameter space.
INDIRECT SEARCHES

Linked to new physics in the EWSB sector.
Dominant in composite Higgs models

Linked to new structures in the gauging sector.
Subleading in composite Higgs models

- **Peskin, Takeuchi, 1992**
- **Barbieri, Rattazzi, 2004**

\[
\hat{S} = g^2 \Pi_{W^3 B}^{(H)} (0)
\]

\[
\hat{T} = \frac{g^2}{M_W^2} \left(\Pi_{W^3 W^3}^{(H)} (0) - \Pi_{W^+ W^-}^{(H)} (0) \right)
\]

\[
W = \frac{g^2 M_W^2}{2} \Pi_{W^3 W^3}^{(H)''} (0)
\]

\[
Y = \frac{g'^2 M_W^2}{2} \Pi_{BB}^{(H)''} (0)
\]

Aim of the project: obtain indirect constraints on parameters of various specific models by computing S and T parameters.
INDIRECT SEARCHES

- Electroweak fit

Experimentally allowed regions: 68%, 90%, 99% CL

SM prediction: $S = 0, T = 0$ (by definition)
INDIRECT SEARCHES

• Electroweak fit

Composite Higgs boson effect: SM Higgs couplings rescaled by a factor: \(\cos(\theta) = \sqrt{1 - \xi} \)

\[
\Delta S = \frac{1}{6\pi} \sin^2(\theta) \log\left(\frac{\Lambda}{M_H}\right)
\]

\[
\Delta T = -\frac{3}{8\pi \cos^2(\theta_W)} \sin^2(\theta) \log\left(\frac{\Lambda}{M_H}\right)
\]

• Resonances can improve this picture
INDIRECT SEARCHES

- Electroweak fit

Loops of fermionic resonances can provide a leading positive contribution to T

$$
\Delta T \sim y_L^4 \sin^2(\theta) \frac{f^2}{M^2_\Psi}
$$
INDIRECT SEARCHES

- Electroweak fit

Tree level exchange of vector resonances contribute positively to S

$$\Delta S \sim \sin^2(\theta) \frac{g^2}{g^2_{\rho}} \sim \frac{M_W^2}{M_{\rho}^2}$$
INDIRECT SEARCHES

• Electroweak fit

Many more effects possible, some already studied in literature, depending on specific models and assumptions made
DIRECT SEARCHES: OBSERVATION AT LHC
DIRECT SEARCHES

• S, T values are influenced by the whole particle content of a theory

• Parameter space constraints from indirect searches can thus be sensible to UV effects above the cutoff Λ (mass of heavier resonances)

• Direct effects would be free from such problem, but up to now no states have been even found

• **LHC Run 1**: $\sim 20 \text{ fb}^{-1}$ dataset at $\sqrt{s} = 7, 8 \text{ TeV}$ between 2010-2013 is being used to place experimental lower bounds on resonance masses

• **Aim of the project**: obtain direct constraints on parameters of various specific models by comparing experimental exclusion limits with theoretical simulations of production events
DIRECT SEARCHES

FERMIONS (TOP PARTNERS)

- Exotic-charged resonances: $T_{2/3}, X_{5/3}$...
- Pair-produced through gluon fusion or singularly with associated top quark

- Sample decays: SM quarks + SM gauge boson or Higgs boson
DIRECT SEARCHES

FERMIONS
(TOP PARTNERS)

- Current experimental exclusion plots for pair produced $X_{5/3} \rightarrow tW$ and $T_{2/3} \rightarrow bW, tH, tZ$ (right)

\[\sigma \times BF(T_{5/3} \rightarrow \bar{t}W \rightarrow \bar{t}W^* + X) \text{ (pb)} \]

\[\text{BF}(T_{5/3} \rightarrow tW^*) = 100\% \]

\[\text{CMS} \quad L = 19.5 \text{ fb}^{-1} \quad \sqrt{s} = 8 \text{ TeV} \]

\[\sigma \text{ [pb]} \]

\[M_T \text{ [GeV]} \]
DIRECT SEARCHES

VECTORS

- Dominant production expected: single drell-yan

- Sample decays: SM gauge bosons, SM gauge bosons + Higgs, ttbar, heavy fermions
DIRECT SEARCHES

VECTORS

- Current experimental exclusion plots for vector resonances in WZ channel (left) and ttbar channel (right)