Statistical Mechanics of Disordered Systems: Applications in Optics

Candidate: Fabrizio Antenucci

Supervisor: Dr. Luca Leuzzi

In collaboration with: Claudio Conti, Andrea Crisanti and Miguel Ibañez Berganza

Sapienza University - Graduate School “Vito Volterra”

30 October 2014
What? Multimode Systems

- (Many) Well-defined Modes a_k

 Space $E_k(r)$
 Frequency $\omega_k \gg \Delta \omega$

- Space - Time Separation of the Electromagnetic Field

$$E(r, t) = \Re \left[\sum_k a_k(t) E_k(r) \right] \quad \text{with} \quad a_k(t) \sim \exp(-i\omega_k t)$$
What? Multimode Systems

• (Many) Well-defined Modes a_k

 Space $E_k(r)$ Frequency $\omega_k (\gg \Delta \omega)$

• Space - Time Separation of the Electromagnetic Field

 \[
 E(r, t) = \Re \left[\sum_k a_k(t) E_k(r) \right] \quad \text{with} \quad a_k(t) \sim \exp(-i\omega_k t)
 \]

• Dynamics for the Complex Mode Amplitudes
 • Near Lasing Regime

 \[
 \frac{d a_j}{dt} = \sum_k G_{jk} a_k + \sum_{klm} G_{jklm} a_k a_l^* a_m + \eta_j
 \]
What? Multimode Systems

- (Many) Well-defined Modes a_k

 \[
 \begin{align*}
 \text{Space} & \quad E_k(r) \\
 \text{Frequency} & \quad \omega_k (\gg \Delta \omega)
 \end{align*}
 \]

- Space - Time Separation of the Electromagnetic Field

 \[
 E(r, t) = \Re \left[\sum_k a_k(t) E_k(r) \right] \quad \text{with} \quad a_k(t) \sim \exp(-i\omega_k t)
 \]

- Dynamics for the Complex Mode Amplitudes
 - Near Lasing Regime

 \[
 \frac{da_j}{dt} = \sum_k G_{jk} a_k + \sum_{klm} G_{jklm} a_k a^*_l a_m + \eta_j
 \]

 What are the values for Gs? Hardly known in Most Cases

 General Properties of Gs \rightarrow Statistical Mechanics
Langevin Dynamics for Complex Amplitudes

\[
\frac{da_j}{dt} = - \frac{d\mathcal{H}}{da_j^*} + \eta_j \quad \text{with} \quad \mathcal{H} \simeq \sum_{jk} G_{jk} a_j^* a_k + \sum_{jklm} G_{jklm} a_j^* a_k a_l^* a_m
\]

Main Working Hypothesis on Gs:

\mathcal{H} is real $\quad \rightarrow \quad$ Hamiltonian System
What? Hamiltonian Multimode Systems

Langevin Dynamics for Complex Amplitudes

\[\frac{da_j}{dt} = -\frac{d\mathcal{H}}{da_j^*} + \eta_j \quad \text{with} \quad \mathcal{H} \simeq \sum_{jk} G_{jk} a_j^* a_k + \sum_{jklm} G_{jklm} a_j^* a_k a_i^* a_m \]

Main Working Hypothesis on \(G_s \):
\(\mathcal{H} \) is real \(\rightarrow \) Hamiltonian System

- Stability of the Steady-State
- Spherical Constraint:
 \[\sum_j |a_j|^2 \equiv \epsilon N \]
Langevin Dynamics for Complex Amplitudes

\[\frac{d a_j}{dt} = -\frac{d \mathcal{H}}{d a_j^*} + \eta_j \quad \text{with} \quad \mathcal{H} \simeq \sum_{jk} G_{jk} a_j^* a_k + \sum_{jklm} G_{jklm} a_j^* a_k a_l^* a_m \]

Main Working Hypothesis on \(G_s \):
\(\mathcal{H} \) is real \(\rightarrow \) Hamiltonian System

- Stability of the Steady-State
- Spherical Constraint: \(\sum_j |a_j|^2 \equiv \epsilon N \)

Machinery Well-Tested for Mean Field SML.

What’s Next?
How? RL Mean Field Theory

• All modes are equal \(\rightarrow \) MFT

Space: Extended Modes Frequency: Narrow Bandwidth

\[
H = -\frac{1}{2N} \sum_{sp}^{1,N} J_{jk} a_s a_p^* - \frac{1}{4!N^3} \sum_{spqr}^{1,N} J_{spqr} a_s a_p^* a_q a_r^*, \quad \sum_k |a_k|^2 = \epsilon N.
\]

with i.i.d. \(J_{sp} \) and \(J_{spqr} \)
How? RL Mean Field Theory

• All modes are equal \(\rightarrow \) MFT

 \[\text{Space: Extended Modes} \quad \text{Frequency: Narrow Bandwidth} \]

\[
\mathcal{H} = -\frac{1}{2N} \sum_{sp}^{1,N} J_{jk} a_s a_p^* - \frac{1}{4!N^3} \sum_{spqr}^{1,N} J_{spqr} a_s a_p^* a_q a_r^*, \quad \sum_k |a_k|^2 = \epsilon N.
\]

with i.i.d. \(J_{sp} \) and \(J_{spqr} \)

\[
\frac{J_{sp}}{J_0} = (1 - \alpha_0) J_0 \quad \frac{J_{spqr}}{J_0} = \alpha_0 J_0 \\
\frac{J_{sp}^2}{J_0^2} - \frac{J_{sp}^2}{J_0^2} = (1 - \alpha)^2 J^2 \quad \frac{J_{spqr}^2}{J_0^2} - \frac{J_{spqr}^2}{J_0^2} = \alpha^2 J^2
\]

Control Parameters

• Degree of disorder
 \[R_J = \frac{J}{J_0} \]

• Pumping rate
 \[\mathcal{P} = \epsilon \sqrt{\beta J_0} \]

• Degree of nonlinearity
 \[\alpha = \alpha_0 \]
“New Kind” Of Spin: a Complex Amplitude (XY + Spherical)

Order Parameters ($Q_{aa} \equiv 1 \leftrightarrow \text{SC}$)

\[
Q_{ab} = \sum_j \frac{(a_j^a)^* a_j^b}{\epsilon N}
\]
\[
R_{ab} = \sum_j \frac{\Re [a_j^a a_j^b]}{\epsilon N}
\]
\[
T_{ab} = \sum_j \frac{\Im [a_j^a a_j^b]}{\epsilon N}
\]
\[
m_\sigma = \frac{\sqrt{2}}{\epsilon N} \sum_j \Re [a_j]
\]
\[
m_\tau = \frac{\sqrt{2}}{\epsilon N} \sum_j \Im [a_j]
\]
“New Kind” Of Spin: a Complex Amplitude (XY + Spherical)

Order Parameters ($Q_{aa} \equiv 1 \leftrightarrow SC$)

$$
Q_{ab} = \sum_j \frac{(a_j^a)^* a_j^b}{\epsilon N}, \quad R_{ab} = \sum_j \frac{\Re [a_j^a a_j^b]}{\epsilon N}, \quad T_{ab} = \sum_j \frac{\Im [a_j^a a_j^b]}{\epsilon N}, \quad m_\sigma = \sqrt{\frac{2}{\epsilon N}} \sum_j \Re [a_j],
$$

$$
m_\tau = \sqrt{\frac{2}{\epsilon N}} \sum_j \Im [a_j].
$$
“New Kind” Of Spin: a Complex Amplitude (XY + Spherical)

Order Parameters ($Q_{aa} \equiv 1 \leftrightarrow \text{SC}$)

\[
Q_{ab} = \sum_j \frac{(a^a_j)^* a^b_j}{\epsilon N} \\
R_{ab} = \sum_j \frac{\Re[a^a_j a^b_j]}{\epsilon N} \\
T_{ab} = \sum_j \frac{\Im[a^a_j a^b_j]}{\epsilon N}
\]

\[
m_\sigma = \frac{\sqrt{2}}{\epsilon N} \sum_j \Re[a_j] \\
m_\tau = \frac{\sqrt{2}}{\epsilon N} \sum_j \Im[a_j]
\]

Four Phases:

- **CW**: all OPs are zero
- **PLW**: all zero but R_{aa}
- **RL**: $m = 0$ but nontrivial Q_{ab}
- **SML**: $m \neq 0$
$\alpha = \alpha_0 = 1$
MFT: Phase Diagram (I)

\[\alpha = \alpha_0 = 1 \]
MFT: Phase Diagram (II)

\[\alpha = \alpha_0 = 0.4 \]
MFT: Phase Diagram (III)
MFT: Intensity Overlap

Hard to detect the mode phase correlations in Experiments:
What about the Overlap between Intensity Fluctuations?

\[I_{ab} \equiv \sum_j \frac{\langle |a_j^a|^2 |a_j^b|^2 \rangle - \langle |a_j^a|^2 \rangle \langle |a_j^b|^2 \rangle}{\epsilon^2 N} \]
MFT: Intensity Overlap

Hard to detect the mode phase correlations in Experiments:
What about the Overlap between Intensity Fluctuations?

\[
I_{ab} \equiv \sum_j \frac{\langle |a_j^a|^2 |a_j^b|^2 \rangle - \langle |a_j^a|^2 \rangle \langle |a_j^b|^2 \rangle}{\epsilon^2 N}
\]

In the MFT it holds (at \(m = 0 \))

\[
I_{ab} \equiv 2 \left(Q_{ab}^2 + R_{ab}^2 \right)^2 + 2 \left(Q_{ab}^2 - R_{ab}^2 \right)^2
\]

Replica Symmetry is spontaneously Broken in the Intensity Fluctuations Overlap in RL regime
MFT: Intensity Overlap - Experiments?

Replica Symmetry is spontaneously Broken in the Intensity Fluctuations Overlap in RL regime

Consider the case of Standard Mode Locking Lasers

Space: Extended Modes Frequency: \(\text{Comb} \ \delta \omega \ll \Delta \omega = 2\pi c/2L \)

\[
a_{k_1}(t) \cdot a_{k_2}^*(t) \cdot a_{k_3}(t) \cdot a_{k_4}^*(t) \sim \exp \left[i \left(\omega_{k_1} - \omega_{k_2} + \omega_{k_3} - \omega_{k_4} \right) t \right]
\]
Consider the case of Standard Mode Locking Lasers

\[a_{k_1}(t) \cdot a^*_{k_2}(t) \cdot a_{k_3}(t) \cdot a^*_{k_4}(t) \sim \exp\left[i(\omega_{k_1} - \omega_{k_2} + \omega_{k_3} - \omega_{k_4})t\right] \]

The Hamiltonian is indeed (purely dissipative case)

\[\mathcal{H} = - \sum_k G_k |a_k|^2 - \frac{\Gamma}{2} \sum_{\text{FMC}(k)} a_{k_1} \cdot a^*_{k_2} \cdot a_{k_3} \cdot a^*_{k_4}, \quad \sum_k |a_k|^2 = \epsilon N \]

with the Frequency Matching Condition

\[\text{FMC}(k) : \quad |\omega_{k_1} - \omega_{k_2} + \omega_{k_3} - \omega_{k_4}| \lesssim \delta \omega \]

\[\delta \omega \ll \Delta \omega \quad \rightarrow \quad k_1 - k_2 + k_3 - k_4 = 0 \]
What? SML Beyond Mean Field

Homogeneous Dilution

FMC Dilution
MC simulations: Results (I)

Energy

![Graph showing energy plots with mean field and other data points]
MC simulations: Results (II)

\[r = \frac{1}{N} \sum_j |a_j| \]
MC simulations: Results (III)

\[m_x = \frac{1}{N} \sum_j \mathbb{R}[a_j] \]
MC simulations: Results (IV)

What is the origin of the lacking of the $O(2)$ Symmetry Breaking?

Phase Waves
What is the origin of the lacking of the $O(2)$ Symmetry Breaking?

Phase Waves
MC simulations: Results (IV)

What is the origin of the lacking of the $O(2)$ Symmetry Breaking?

Phase Waves
What is the origin of the lacking of the $O(2)$ Symmetry Breaking?

Phase Waves
MC simulations: Results (V)

\[a_j = |a_j| \exp(i\Phi_j) : \quad E(t | T) = \sum_{j=1}^{N} |a_j(T)| \exp[i(2\pi\omega_j t + \Phi_j(T))], \quad T \gg t \]

Phase Delay: \[\Phi_j \simeq \Phi_0 + \Phi' \omega_j \]
MC simulations: Results (V)

\[a_j = |a_j| \exp(i\Phi_j) : \quad E(t|T) = \sum_{j=1}^{N} |a_j(T)| \exp\left[i\left(2\pi\omega_j t + \Phi_j(T)\right)\right], \quad T \gg t \]

Phase Delay: \[\Phi_j \simeq \Phi_0 + \Phi'\omega_j \]
MC simulations: Results (V)

\[a_j = |a_j| \exp(i\Phi_j) : \quad E(t|T) = \sum_{j=1}^{N} |a_j(T)| \exp\left[i \left(2\pi\omega_j t + \Phi_j(T)\right)\right], \quad T \gg t \]

Phase Delay: \[\Phi_j \simeq \Phi_0 + \Phi'\omega_j \]
MC simulations: Results (V)

\[a_j = |a_j| \exp(i\Phi_j) : \quad E(t|T) = \sum_{j=1}^{N} |a_j(T)| \exp \left[i \left(2\pi \omega_j t + \Phi_j(T) \right) \right], \quad T \gg t \]

\textbf{Phase Delay:} \quad \Phi_j \simeq \Phi_0 + \Phi' \omega_j
MC simulations: Results (VI)

Evidence in the Spectra

\[I(\lambda) \text{ (a.u.)} \]

\[\lambda \text{ (a.u.)} \]

\[PC(N) = 1.60(2); \ N = 150 \]

\[\sigma_g = 3885 \]

\[\sigma_g = 243 \]

\[g(\lambda) \]
Further “Surprises” in SML Beyond MFT:

- Metastability Vanishes in the Thermodynamic Limit
- Vanishing Two Point Correlation Functions
- Slow Dynamics of Phase Waves (different slopes as basins of the FEL)
- Power Condensation ($\mathcal{O}(1)$ modes take $\mathcal{O}(N)$ intensity in hyper-diluted systems)
- Synchronous MC Algorithm

Outlook:

- Random Laser Models Beyond MFT
Thanks for the attention

Stvdvm Vrbis (photos by MIB)