Development of Scintillating Bolometers for the Search of the Neutrinoless Double Beta Decay

PhD Candidate: Laura Cardani
Supervisor: prof. Fernando Ferroni

Wednesday, February 15, 2012
The Importance of the 0νDBD

- ν: Dirac or Majorana?
- (Only) if ν is a Majorana particle (0νDBD can happen)
- Not allowed by SM; up to now never observed $T_{1/2}^{0\nu} > 10^{24}$ y

\[\frac{1}{T_{1/2}^{DBD0\nu}} = G_{0\nu}(Q, Z) |M_{0\nu}|^2 m_{\beta\beta}^2 \]
The Importance of the 0νDBD

- ν: Dirac or Majorana?
- (Only) if ν is a Majorana particle (0ν)DBD can happen
- Not allowed by SM; up to now never observed $T_{1/2}^{0\nu} > 10^{24} y$

What are we looking for?

Nuclear process: emission of two e^- without ν

If we plot the sum of the energies of the two e^- we expect a monochromatic peak at the Q-value of the decay
The Bolometric Detectors

- A bolometer can be considered as an “ideal” calorimeter operated at cryogenic temperatures (~10 mK).

- It can be sketched as absorber + sensor.

- An energy release in the absorber gives rise to a temperature increase (read by the sensor).

- They can be grown with the isotope of interest (e.g., TeO$_2$ for 130Te) → source = detector.

![Diagram of bolometer and typical bolometric pulse](image)
The Bolometric Detectors

- A bolometer can be considered as an “ideal” calorimeter operated at cryogenic temperatures (~10 mK)
- It can be sketched as absorber + sensor
- An energy release in the absorber gives rise to a temperature increase (read by the sensor)
- They can be grown with the isotope of interest (ex: TeO$_2$ for 130Te) --> source = detector

Which advantages?
- Excellent resolution (5 keV @ 2615 keV)
- Good efficiency (>80%)
- Radio-pure --> low intrinsic background
- Scalability
The Sensitivity

\[S_0 \propto \varepsilon \frac{i.a.}{A} \sqrt{\frac{M \cdot T}{\Delta E \cdot b}} \]

- i.a. = isotopic abundance
- \(A \) = mass number
- \(\varepsilon \) = detector efficiency
- \(M \) = mass [kg]
- \(T \) = measurement time [y]
- \(\Delta E \) = energy resolution [keV]
- \(b \) = background [counts/keV/kg/y]
The Sensitivity

\[
S_{0,\nu} \propto \varepsilon \frac{i.a.}{A} \sqrt{\frac{M \cdot T}{\Delta E \cdot b}}
\]

- **i.a.** = isotopic abundance
- **A** = mass number
- **ε** = detector efficiency
- **M** = mass [kg]
- **T** = measurement time [y]
- **ΔE** = energy resolution [keV]
- **b** = background [counts/keV/kg/y]

For Bolometers: how can we improve?

- **ε** > 80%
- **M** ~ 1 ton
- **T** ~ 5 y
- **ΔE** ~ 5 keV
- **b** ~ 10^{-2} counts/keV/kg/y
The Challenge for Background Reduction

- The detectors are located in deep underground laboratories

LNGS
(Laboratori Nazionali del Gran Sasso)
3650 m.w.e.

Muon flux: \((2.58 \pm 0.3) \times 10^{-8} \mu/(s \text{ cm}^2)\)

Neutron flux [<10MeV]: \(\approx 4 \times 10^{-6} \text{n/(s cm}^2)\)
F. Arneodo et al., Il Nuovo Cim. 112A, 819, 1999

Gamma flux: \(\approx 0.73 \gamma/(s \text{ cm}^2)\)

- Proper shielding and vetoes
- Development of proper cleaning/storage procedures

- Ultimate limit given by the contaminations of the detector itself!
The Cuoricino Experiment

- Largest bolometric experiment ever realized
- Study of $^{130}\text{Te} \rightarrow ^{130}\text{Xe} + 2\text{e}^-$
- 40.7 kg of TeO$_2$ (11.6 kg of ^{130}Te)
- Limit: $m_{\beta\beta} < 300 \div 710$ eV
- Study of the background: main problem surface α contaminations of the materials!

Black = background measurement
Green = calibration measurement (normalized on ^{208}Tl peak)
The Solution: Scintillating Bolometers

- α and β/γ can release a similar heat in the bolometer but they emit a different amount of light --> we detect heat + light

- The α background can be eliminated!

- Our light detector is a thin germanium slab operated as bolometer

- Unfortunately, TeO$_2$ does not scintillate, so we need to grow other crystals....
The Solution: Scintillating Bolometers

- α and β/γ can release a similar heat in the bolometer but they emit a different amount of light --> we detect heat + light
- The α background can be eliminated!
- Our light detector is a thin germanium slab operated as bolometer
- Unfortunately, TeO$_2$ does not scintillate, so we need to grow other crystals....
- A large Q-value provides a further background reduction (less β/γ contributions at higher energies)
- However, we need also a large isotopic abundance!
The LUCIFER Experiment

- **Baseline for the LUCIFER project:** ZnSe

- **Study of ^{82}Se decay**

- Q-value = 2995 keV

- i.a. $\sim 9.2\%$ but enrichment feasibility proved!

- ZnSe has a large LY (~ 7 keV/MeV)

- Good energy resolution

- Radio - pure

- Array of scintillating bolometers

- R & D on different crystals to find the best candidate for a large mass experiment

Wednesday, February 15, 2012
Current Activity...

- The first tests for the “official” ZnSe production begun a few weeks ago
- Several tests are needed to characterize and understand the ZnSe features
- I’m involved in the assembly and operation of the ZnSe bolometers (LNGS)
- I’m analyzing the first results of these runs: internal contaminations, background rejection power, resolution and so on...
...R&D on Possible Alternatives

ZnMoO$_4$

(arXiv:1202.0238)

- Promising candidate for the study of 100Mo
- Q-value ~ 3034 keV
- i.a. $\sim 9.7\%$
ZnMoO₄

(arXiv:1202.0238)

- This crystal has a low LY (is this a problem for larger crystals?)
- Good energy resolution
- High radio-purity
- Different pulse shape for α and β/γ
...R&D on Possible Alternatives

TeO$_2$

(Astropart. Phys. 35 (2012) 558)

- Test on a small TeO$_2$ crystal: first detection of Cerenkov light
- The detected light is not enough BUT
- TeO$_2$ is a well known bolometer and its performances are already optimized
- 1000 crystals already @ LNGS, ready for the CUORE experiment
R&D on Possible Alternatives

\[TeO_2 \]

(Astropart. Phys. 35 (2012) 558)

- Test on a small TeO2 crystal: first detection of Cerenkov light
 - The detected light is not enough BUT
 - TeO2 is a well known bolometer and its performances are already optimized
 - 1000 crystals already @ LNGS, ready for the CUORE experiment

- So...more tests on reflecting foil and light detectors must be performed
Conclusions and Perspectives

- The background reduction is one of the main issues for (0ν)DBD physics.
- The LUCIFER experiment will study the (0ν)DBD of 82Se by means of ZnSe bolometers.
- Thanks to the scintillating bolometers technique, we will achieve a very low background counting rate ($\sim 10^{-3}$ counts/keV/kg/y) in the energy region of interest -- a competitive sensitivity on $m_{\beta\beta}$ (~ 100 meV).
- I will characterize the ZnSe detectors by means of bolometric and optical measurements, performed in the cryostats of Roma and Gran Sasso laboratories.
- At the same time, I will follow a parallel R&D activity on other possible candidates for the study of the (0ν)DBD.